Abstract:
An overvoltage protection device includes a housing including a first substantially planar electrical contact surface and a sidewall. The housing defines a cavity therein and has an opening in communication with the cavity. An electrode member of the device includes a second substantially planar electrical contact surface facing the first electrical contact surface and disposed within the cavity. A portion of the electrode member extends out of the cavity and through the opening. A wafer formed of varistor material and having first and second opposed, substantially planar wafer surfaces is positioned within the cavity and between the first and second electrical contact surfaces with the first and second wafer surfaces engaging the first and second electrical contact surfaces, respectively.
Abstract:
An overvoltage protection device includes a first electrode member having a first substantially planar contact surface and a second electrode member having a second substantially planar contact surface facing the first contact surface. A wafer formed of varistor material and having first and second opposed, substantially planar wafer surfaces is positioned between the first and second contact surfaces with the first and second wafer surfaces engaging the first and second contact surfaces, respectively. The contact surfaces may apply a load to the wafer surfaces. Preferably, the electrode members have a combined thermal mass which is substantially greater than a thermal mass of the wafer. The wafer may be formed by slicing a rod of varistor material. The device may include a housing including the first substantially planar contact surface and a sidewall, the housing defining a cavity within which the second electrode is disposed.
Abstract:
A cover is provided for acute angled insulator pair arrangement, such as a V-switch. The insulator pair arrangement includes a first insulator and a second insulator, the insulators extending relative to each other at an acute angle from first ends thereof. The cover includes a first cover member and a second cover member. The second cover member is configured to mate with the first cover member to define an enclosure that encloses the first ends of the insulators and a region therebetween. The enclosure extends to a position proximate an end skirt of each of the insulators closest to the first ends thereof without extending over the end skirts.
Abstract:
An electrical joint assembly for connecting a plurality of conductors includes a busbar hub and a plurality of limiter modules. The busbar hub includes an electrically conductive busbar body and a plurality of conductor legs extending from the busbar body. The limiter modules each include a fuse element. Each of the limiter modules is connected to a respective one of the conductor legs and is connectable to a respective conductor to provide a fuse controlled connection between the respective conductor leg and the respective conductor. Each of the limiter modules is independently removable from the respective one of the conductor legs.
Abstract:
An electrical cable includes a core having a conductor, insulation surrounding the conductor, and an outer sheath surrounding the core. A portion of the conductor is stripped bare at a free end and a cavity is formed within the insulation at the cable free end. First and second shims are concentrically secured to the exposed portion of the conductor such that end portions of the shims are positioned adjacent to the cavity. The bare conductor is secured within a barrel portion of a terminal lug. A first sealing mastic material is disposed within the cavity and heated to encapsulate end portions of the shims. A second sealing mastic material is applied around the lug barrel portion, first and second shims, and a portion of the outer sheath. A heat shrinkable tube having an inner surface of zinc oxide stress control mastic material is secured around the second sealing mastic material.
Abstract:
An operation detection device for an overcurrent protection component is provided. The overcurrent protection component has a closed state and an open state and outputs a transition event responsive to a transition between the closed state and the open state. The operation detection device includes a housing configured to attach to the overcurrent protection component. A sensor is positioned in the housing at a location selected to allow the sensor to detect the transition event. A switch circuit is operatively coupled to the sensor and is configured to generate an output signal indicating a change in state of the overcurrent protection component responsive to detection of the transition event by the sensor.
Abstract:
An electrical joint assembly for connecting a plurality of conductors includes a busbar hub and a plurality of limiter modules. The busbar hub includes an electrically conductive busbar body and a plurality of conductor legs extending from the busbar body. The limiter modules each include a fuse element. Each of the limiter modules is connected to a respective one of the conductor legs and is connectable to a respective conductor to provide a fuse controlled connection between the respective conductor leg and the respective conductor. Each of the limiter modules is independently removable from the respective one of the conductor legs.
Abstract:
The resilient sleeve member defines an axially extending inner passage. The holdout device includes a core mounted in the inner passage of the sleeve member. The core defines a core passage to receive the elongate substrate and has at least first and second sections. The first and second sections are arranged in a supporting position such that the core maintains the sleeve member in a radially expanded condition. The first and second sections are arranged for relative telescoping movement from the supporting position to a releasing position to permit at least a portion of the sleeve member to radially contract from the radially expanded position to a radially recovered position.
Abstract:
A connection protector kit for use with a plurality of electrical stub connections includes a cap defining an opening and having an interior, wall defining a cavity. The cavity communicates with the opening. A separator insert defines an insert axis and includes a plurality of holding walls. Each of the holding walls is adapted to hold a respective one of the stub connections. A plurality of axially extending separator walls are interposed between adjacent ones of the holding walls. The cavity is adapted to receive the separator insert and the stub connections.