Abstract:
A process for continuous hydrogenation of adiponitrile (ADN) to hexamethylene diamine (HMD) and optionally to amninocapronitrile (ACN) involving the catalytic hydrogenation of adiponitrile at relatively low temperature (e.g., 75.degree. C.) and pressure (e.g., 500 psig) using a sponge cobalt catalyst (Raney.RTM. Co) in a reaction medium that is substantially free of caustic. In such a process periodic addition of water controls the production of side reaction products and the periodic addition of ammonium hydroxide rejuvenates the catalyst. Hexamethylene diamine is an important intermediate for the synthesis of polyamides such as Nylon-6,6 and aminocapronitrile is a potential intermediate of Nylon-6.
Abstract:
Disclosed is a fluorinated alkylalkoxylate compound of Formula 1, Rf—O—(CF2)x(CH2)y—O—(QO)z—H (1) wherein Rf is a linear or branched perfluoroalkyl having 1 to 6 carbon atoms optionally interrupted by one to three ether oxygen atoms; x is an integer of 1 to 6; y is an integer of 1 to 6; Q is a linear 1,2-alkylene group of the formula CmH2m where m is an integer of 2 to 10; and z is an integer of 1 to 30.
Abstract:
An improved process for producing perfluoroalkyl iodides of formula (I) F(CF2CF2)n—I (I) wherein n is an integer from 2 to 3, wherein the improvement comprises contacting at least one perfluoroalkyl iodide of formula (II) and at least one perfluoroalkyl iodide of formula (III) F(CF2CF2)m—I (II) F(CF2CF2)p—I (III) wherein m is an integer greater than or equal to 3, and p is an integer equal to or lower than 2, at a) a molar ratio of formula (III) to formula (II) of from about 1:1 to about 6:1, b) a residence time of from about 1 to about 9 seconds, and c) a temperature of from about 450° C. to about 495° C.
Abstract:
A process is provided for the synthesis of tetrahydrofuran and related compounds by hydrogenation of furan and derivatives, using a sponge nickel catalyst that has been promoted with iron and chromium.
Abstract:
An improved process for producing perfluoroalkyl iodides of formula (I) F(CF2CF2)n—I (I) wherein n is an integer from 2 to 3, wherein the improvement comprises contacting at least one perfluoroalkyl iodide of formula (II) and at least one perfluoroalkyl iodide of formula (III) F(CF2CF2)m—I (II) F(CF2CF2)p—I (III) wherein m is an integer greater than or equal to 3, and p is an integer equal to or lower than 2, at a) a molar ratio of formula (III) to formula (II) of from about 1:1 to about 6:1, b) a residence time of from about 1 to about 9 seconds, and c) a temperature of from about 450° C. to about 495° C.
Abstract:
Elevated temperature, gas-phase, catalyzed processes for preparing HCN in which induction heating is used as a source of energy, and novel apparatus for carrying out said processes.
Abstract:
This invention provides a process for the catalytic partial oxidation of a hydrocarbon feedstock by contacting a feed stream including a hydrocarbon feedstock and an oxygen-containing gas with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream including carbon monoxide and hydrogen. The process of this invention is characterized by using an unsupported porous catalyst containing rhodium, such as rhodium foam.
Abstract:
Process for producing 6-aminocapronitrile and/or hexamethylenediamine by hydroformylating 3-pentenenitrile, isolating a formylvaleronitrile (FVN) mixture from the hydroformylation reaction product, reductively aminating the FVN mixture and isolating the desired product.
Abstract:
A process for preparing 5-chloro-2,3-dihydro-1H-inden-1-one comprising contacting 3-chloro-1-(chlorphenyl)-1-propanone with a catalyst selected from sulfuric acid and solid acid catalysts.