Abstract:
A method of manufacturing a fluid ejection device includes providing a barrier layer and an orifice layer on a substrate, laminating a layer of photo-resist over a substantially planar surface of the orifice layer, forming an orifice in the orifice layer, and forming a counterbore in the layer of photo-resist, with forming a counterbore in the layer of photo-resist including exposing a portion of the substantially planar surface of the orifice layer within the counterbore.
Abstract:
A method of forming a tapered bore an orifice layer of a photo-resist comprises forming a lens in a surface of a first unexposed portion of the layer and exposing the first unexposed portion through a bore-hole mask to define an exposed portion and a second unexposed portion, wherein the second unexposed portion has a tapered shape. The layer is baked to cross-link the exposed portion and developed to remove the second unexposed portion to form a tapered bore hole. The tapered bore hole has a shape corresponding to the tapered shape.
Abstract:
Methods of manufacturing a fluid ejection device comprise, in one embodiment, forming filler structures on a substrate and laminating a dry film onto the substrate over the filler structures. The dry film defines a barrier layer around the filler structures and an orifice layer above the filler structures. The filler structures are removed to form voids within the barrier layer.
Abstract:
An inkjet nozzle includes an aperture with a noncircular opening substantially defined by a polynomial equation. A droplet generator is also described which includes a firing chamber fluidically coupled to a fluid reservoir, a heating resistor and a nozzle. The nozzle includes an aperture forming a passage from the firing chamber to the exterior of the droplet generator through a top hat layer. The nozzle is defined by a closed polynomial and has a mathematically smooth and mathematically continuous shape around aperture's perimeter wall, with two protrusions extending into the center of the aperture.
Abstract:
An inkjet nozzle includes an aperture with a noncircular opening substantially defined by a polynomial equation. A droplet generator is also described which includes a firing chamber fluidically coupled to a fluid reservoir, a heating resistor and a nozzle. The nozzle includes an aperture forming a passage from the firing chamber to the exterior of the droplet generator through a top hat layer. The nozzle is defined by a closed polynomial and has a mathematically smooth and mathematically continuous shape around aperture's perimeter wall, with two protrusions extending into the center of the aperture.
Abstract:
A fluid ejection device includes a fluidic layer assembly mounted to a substrate, the fluidic layer assembly having a raised portion formed on a side that faces away from the substrate. A first nozzle is formed through a portion of the fluidic layer assembly other than the raised portion, and a second, larger nozzle is formed through the raised portion. A method of fabricating a fluid ejection device includes applying a first layer of a photoresist material to a substrate and a second layer of a photoresist material to the first layer. A sequence of exposures defines a first region of soluble material in the first layer that becomes the first nozzle and second and third regions of soluble material in the first and second layers, respectively, that jointly become the second nozzle. A region of insoluble material in the second layer becomes the raised portion.