Abstract:
For aging deformation of a reaction vessel used for production of titanium sponge by the Kroll method, the deformation of the reaction vessel can be corrected to a desired deformation. The apparatus for correcting the deformation corrects by being inserted inside of the cylindrical deformation of the reaction vessel, the apparatus has multiple cylinder arms radially extendable to a circumference, a deformation-correcting head arranged on a top part of the cylinder arm, a hydraulic power unit connected to the cylinder arm and driving the deformation-correcting head, a detecting means for the stroke of the deformation-correcting head, and a measuring means for the pressing force against the reaction vessel. Furthermore, the method for correcting the deformation of the reaction vessel using the apparatus has a step of pressing the reaction vessel while adjusting stroke of the deformation-correcting head depending on an amount of deformation of the reaction vessel.
Abstract:
Provided is a method for producing metal by molten salt electrolysis, by which the metal can be efficiently produced.A method for producing metal by using an apparatus for molten salt electrolysis having an electrolytic cell and an electrode pair, wherein the molten salt electrolysis in the electrolytic cell and heating of the molten salt by a Joule heat generation between a pair of electrodes for electrolysis are simultaneously performed; and wherein the apparatus for molten salt electrolysis has at least two sets of electrode pair, and at least one set of the electrode pairs is electrically opened.
Abstract:
A method for producing titanium tetrachloride is provided, in which valuable materials such as unreacted titanium-containing raw material, carbon raw material and chlorine can be recovered from solid recovered material generated in chlorinating process of titanium-containing raw material, and titanium-containing raw material can be efficiently used. The treatment method of titanium-containing raw material includes the steps: separating and removing impurities selectively from the titanium-containing raw material as chlorides so as to obtain high titanium-containing raw material, producing titanium tetrachloride using the high titanium-containing raw material, and performing separating process of impurities from solid recovered material byproduced in the production of titanium tetrachloride, together with selective chlorinating treatment of the titanium-containing raw material. Thus, the high titanium-containing raw material can be produced while recovering chlorine and impure oxides.
Abstract:
The titanium porous body according to the present invention is in a form of a sheet, and has a thickness of 0.3 mm or less and a compressive strain amount of 0.20 or less upon pressurization at 80 MPa, wherein a half width of a first peak that is the highest peak height in a pore size distribution showing a relationship between a diameter and a volume of pores is less than or equal to 3.5 μm, and a peak height of a second peak that is the second highest peak height after the first peak is less than or equal to 10% of the peak height of the first peak.
Abstract:
A method for manufacturing a porous metal body according to the present invention includes: a surface oxidizing step of heating a titanium-containing powder in an atmosphere containing oxygen at a temperature of 250° C. or more for 30 minutes or more to provide a surface-oxidized powder; and a sintering step of depositing the surface-oxidized powder in a dry process, and sintering the surface-oxidized powder by heating it in a reduced pressure atmosphere or an inert atmosphere at a temperature of 950° C. or more.
Abstract:
The titanium-based porous body according to the present invention is in a form of a sheet and contains titanium, and the titanium-based porous body has a thickness of 0.8 mm or less, a porosity of 30% to 65%, a maximum height Rz1 of one sheet surface of 30 µm or less, a ratio of a maximum height Rz2 of other sheet surface to the maximum height Rz1 of the one sheet surface (Rz2/Rz1) of 1.2 or more, and a compression deformation rate of 19% or less.
Abstract:
Provided is a solid catalyst component for olefin polymerization which is capable of exerting favorable ethylene responsiveness while forming a propylene homopolymer having high stereoregularity, when subjected to ethylene-propylene copolymerization reaction. The present invention provides a solid catalyst component for olefin polymerization, comprising titanium, magnesium, halogen, and an internal electron-donating compound, wherein the internal electron-donating compound comprises an electron-donating compound (i) having a phthalic acid ester structure, and an electron-donating compound (ii) having two or more kinds of groups selected from an ether group, an ester group and a carbonate group and having no phthalic acid ester structure, wherein a content ratio of the electron-donating compound (ii) having two or more kinds of groups selected from an ether group, an ester group and a carbonate group and having no phthalic acid ester structure is 0.5 to 1.5% by mass.
Abstract:
A manufacturing method of a gas diffusion layer with a microporous layer includes coating a gas diffusion layer containing titanium with a precursor containing an electroconductive material, a water-repellent resin, and a polyethylene oxide, and heating the gas diffusion layer coated with the precursor to form a microporous layer containing the electroconductive material and the water-repellent resin on a surface of the gas diffusion layer. The heating atmosphere is a non-oxidation atmosphere where an oxygen concentration is no more than 0.3% by volume.
Abstract:
An object of the present invention is to recover a minor metal and/or rare-earth metal. The present invention provides a method for recovering a minor metal and/or rare-earth metal from a post-chlorination residue in titanium smelting. The minor metal and/or rare-earth metal is one or more metal selected from the group consisting of Sc, V, Nb, Zr, Y, La, Ce, Pr, and Nd.
Abstract:
A solid catalyst component for polymerization of an olefin having a polymerization activity equivalent to or higher than a solid catalyst component having a phthalic acid ester compound or diether compound as an internal electron-donating compound, and can produce an olefin polymer having excellent bulk density and low content of olefin oligomers. A solid catalyst component for polymerization of an olefin is obtained by: (i) bringing compounds selected from particular phthalic acid ester compounds (A), a magnesium compound and a halogen-containing titanium compound into contact; (ii) bringing the first contact product obtained in step (i) and compounds selected from particular diether compounds (B) into contact, and washing the second contact product; and (iii) obtaining a contact product between the washed second contact product and a halogen-containing titanium compound, washing the contact product, and bringing it into contact with particular phthalic acid ester compounds (A) and a halogen-containing titanium compound.