Abstract:
An apparatus includes a battery state module that determines a battery state of each of a plurality of battery cells forming a battery unit. A battery state includes a health of the battery cell. A battery state of a battery cell differs from a battery state of other battery cells of the battery unit. Each battery cell is connected to a shared bus through a bypass converter that provides power from the battery cell to the shared bus. A charge/discharge modification module determines, based on battery state, an amount to vary a charging characteristic for each battery cell compared to a reference charging characteristic. Each charging characteristic varies as a function of a reference state. A charge/discharge module adjusts charging/discharging of a battery cell of the battery unit based on the charging characteristic of the battery cell.
Abstract:
For misalignment measurement, a method receives a plurality of position detection signals from a corresponding plurality of detection coils. The plurality of position detection signals are generated from mutual inductance between the plurality of detection coils and an energized field-generating detection coil. The method further generates detection information from the position detection signals. In addition the method calculates a lateral misalignment along a lateral Y axis from the detection information. The lateral misalignment includes a lateral misalignment distance and a lateral misalignment direction. The method calculates a vehicle speed along a longitudinal X axis from the detection information. In addition, the method energizes a transmitter power coil and controls the power transfer based on the vehicle speed and lateral misalignment.
Abstract:
For textured digital elevation model generation, a method projects swath point projection coordinates of each lidar point of texel swaths into a corresponding texel swath with normalized projection coordinates. Each texel swath includes lidar points, an optical image, and swath output projection point coordinates of the lidar points into the optical image. The method generates a projection matrix including lidar point data for each lidar point of each texel swath. The method calculates enhanced lidar coordinates for each lidar point as a function of minimizing misregistration errors. In addition, the method creates enhanced output pixel coordinates for each image pixel based on the enhanced lidar coordinates for the lidar points and the associated output pixel coordinates. The method generates a textured digital elevation model based on the enhanced output pixel coordinates for each image pixel, and the enhanced lidar coordinates.
Abstract:
For calculating statistical Markov model-like state transition probabilities, a method represents state transition probabilities between a plurality of statistical Markov model-like states and output probabilities associated with a plurality of previous statistical Markov model-like states. The state transition probabilities between the plurality of previous states depend on a sequence of previous states of the plurality of previous states. The output probabilities associated with each of the plurality of states depend on the sequence of previous states.
Abstract:
For textured digital elevation model generation, a method projects swath point projection coordinates of each lidar point of texel swaths into a corresponding texel swath with normalized projection coordinates. Each texel swath includes lidar points, an optical image, and swath output projection point coordinates of the lidar points into the optical image. The method generates a projection matrix including lidar point data for each lidar point of each texel swath. The method calculates enhanced lidar coordinates for each lidar point as a function of minimizing misregistration errors. In addition, the method creates enhanced output pixel coordinates for each image pixel based on the enhanced lidar coordinates for the lidar points and the associated output pixel coordinates. The method generates a textured digital elevation model based on the enhanced output pixel coordinates for each image pixel, and the enhanced lidar coordinates.
Abstract:
Methods and materials for producing meso-biliverdin are provided where the methods include reacting phycocyanobilin with an amphoteric compound in a solvent to yield meso-biliverdin.
Abstract:
A magnetic coupler is disclosed for wireless power transfer systems. A ferrimagnetic component is capable of guiding a magnetic field. A wire coil is wrapped around at least a portion of the ferrimagnetic component. A screen is capable of blocking leakage magnetic fields. The screen may be positioned to cover at least one side of the ferrimagnetic component and the coil. A distance across the screen may be at least six times an air gap distance between the ferrimagnetic component and a receiving magnetic coupler.
Abstract:
An apparatus for zero voltage switching is disclosed. A system and method also perform the functions of the apparatus. The apparatus includes an MCT region module that defines a minimum current trajectory (“MCT”) for operation between a maximum positive power output to a maximum negative power output of a bidirectional DC-to-DC converter. The converter includes a dual active bridge series resonant converter. The MCT defines a boundary between a zero voltage switching (“ZVS”) region and a hard switching region. The apparatus includes an offset module that defines an offset to the MCT, the offset in the ZVS region, and an MCT control module that adjust switching of switches of the converter to maintain operation of the converter in the ZVS region between the maximum positive power output to a maximum negative power output along a trajectory defined by the MCT and the offset.
Abstract:
For predicting timing violations, a prediction module predicts a timing violation for a first instruction in a semiconductor device in response to use by the first instruction of a specified sensitized path. The prediction module further mitigates the predicted timing violation.
Abstract:
A computer implement method for commissioning a sensor is described. The method includes monitoring for a commissioning event. Upon detection of the commissioning event, a switch is paired with a sensor. A doorway that is in a field of view of the sensor is identified. A boundary that separates a doorway area from a neighboring area that is in the field of view of the sensor is also identified.