摘要:
A wireless communication system hosts a plurality of processes in accordance with a communication protocol. The system includes application specific instruction set processors (ASISPs) that provided computation support for the process. Each ASISP is capable of executing a subset of the functions of a communication protocol. A scheduler is used to schedule the ASISPs in a time-sliced algorithm so that each ASISP supports several processes. In this architecture, the ASISP actively performs computations for one of the supported processes (active process) at any given time. The state information of each process supported by a particular ASISP is stored in a memory bank that is uniquely associated with the ASISP. When a scheduler instructs an ASISP to change which process is the active process, the state information for the inactivated process is stored in the memory bank and the state information for the newly activated process is retrieved from the memory bank.
摘要:
A continuous time electronic dispersion compensation architecture using feed forward equalization and a non-linear decision feedback equalization forms an output signal by a linear combination of successively delayed versions of the input signal and the sliced output signal weighted by appropriate coefficients. A selected number of taps in the mixer used to generate a corresponding number of coefficients for use in the feed forward equalizer are held to a selected voltage to ensure that the coefficients associated with these two taps do not drift. This causes the other coefficients to converge to a unique minimum square error value. In one embodiment the selected voltage is the maximum system voltage.
摘要:
An adaptive signal equalizer with a feedforward filter in which the feedback error signal and corresponding incoming data signal are dynamically aligned in time using signal interpolation, and further, to control the precursor/postcursor filter taps configuration, thereby producing more adaptive filter tap coefficient signals for significantly improved and robust signal equalization.
摘要:
An adaptive coefficient signal generator for use in an adaptive signal equalizer with fractionally-spaced feedback. The signals representing the feedback tap coefficients are generated in conjunction with a timing interpolation parameter such that the fractionally-spaced feedback circuitry dynamically emulates symbol-spaced feedback circuitry.
摘要:
A continuous time electronic dispersion compensation architecture using feed forward equalization and a non-linear decision feedback equalization forms an output signal by a linear combination of successively delayed versions of the input signal and the sliced output signal weighted by appropriate coefficients. A selected number of taps in the mixer used to generate a corresponding number of coefficients for use in the feed forward equalizer are held to a selected voltage to ensure that the coefficients associated with these two taps do not drift. This causes the other coefficients to converge to a unique minimum square error value. In one embodiment the selected voltage is the maximum system voltage.
摘要:
An architecture and method for flexible preamble processing is disclosed herein. The preamble processing engine detects a code sequence in input, where the code sequence is a sum of a first code sequence and a second code sequence The preamble processing engine includes a data input line, a code input line, a despreader, and a plurality of memory registers. The code input selectively receives the first code sequence or the second code sequence, the first code sequence having a period longer than a period for the second code sequence. The despreader is coupled to the data input line and the code input line. The despreader producing a despread result between the first code sequence and the input data. Lastly, the plurality of memory registers, which are coupled to the despreader, each stores only a portion of the despread results.
摘要:
A wireless communication system hosts a plurality of processes in accordance with a communication protocol. The system includes application specific instruction set processors (ASISPs) that provided computation support for the process. Each ASISP is capable of executing a subset of the functions of a communication protocol. A scheduler is used to schedule the ASISPs in a time-sliced algorithm so that each ASISP supports several processes. In this architecture, the ASISP actively performs computations for one of the supported processes (active process) at any given time. The state information of each process supported by a particular ASISP is stored in a memory bank that is uniquely associated with the ASISP. When a scheduler instructs an ASISP to change which process is the active process, the state information for the inactivated process is stored in the memory bank and the state information for the newly activated process is retrieved from the memory bank.
摘要:
A wireless communication system hosts a plurality of processes in accordance with a communication protocol. The system includes application specific instruction set processors (ASISPs) that provided computation support for the process. Each ASISP is capable of executing a subset of the functions of a communication protocol. A scheduler is used to schedule the ASISPs in a time-sliced algorithm so that each ASISP supports several processes. In this architecture, the ASISP actively performs computations for one of the supported processes (active process) at any given time. The state information of each process supported by a particular ASISP is stored in a memory bank that is uniquely associated with the ASISP. When a scheduler instructs an ASISP to change which process is the active process, the state information for the inactivated process is stored in the memory bank and the state information for the newly activated process is retrieved from the memory bank.
摘要:
A wireless communication system hosts a plurality of processes in accordance with a communication protocol. The system includes application specific instruction set processors (ASISPs) that provided computation support for the process. Each ASISP is capable of executing a subset of the functions of a communication protocol. A scheduler is used to schedule the ASISPs in a time-sliced algorithm so that each ASISP supports several processes. In this architecture, the ASISP actively performs computations for one of the supported processes (active process) at any given time. The state information of each process supported by a particular ASISP is stored in a memory bank that is uniquely associated with the ASISP. When a scheduler instructs an ASISP to change which process is the active process, the state information for the inactivated process is stored in the memory bank and the state information for the newly activated process is retrieved from the memory bank.
摘要:
An apparatus and method for adaptively introducing a compensating signal latency related to a signal latency of a data symbol decision circuit. Adaptive timing control circuitry, including an interpolating mixer implemented as a tapped delay line with correlated tap coefficients, introduces a latency adaptively and substantially matching the latency of the data decision circuit for use within an adaptive equalizer, thereby minimizing the mean-squared error of such decision circuit. This adaptive latency is used in generating the feedback error signal which, in turn, can be used by the feedforward equalizer for dynamically adjusting its adaptive filter tap coefficients.