摘要:
A wireless communication base station comprising a plurality of application specific instruction set processors (ASISPs) configured to support one or more processes hosted by the base station, and to track process state information associated with each of the processes; and a memory configured to store the tracked process state information, and when an ASISP of the plurality of ASISPs is reallocated from a first process to a second process, the respective ASISP is configured to retrieve from the memory process state information for the second process.
摘要:
A wireless communication base station comprising a plurality of application specific instruction set processors (ASISPs) configured to support one or more processes hosted by the base station, and to track process state information associated with each of the processes; and a memory configured to store the tracked process state information, and when an ASISP of the plurality of ASISPs is reallocated from a first process to a second process, the respective ASISP is configured to retrieve from the memory process state information for the second process.
摘要:
A wireless communication system hosts a plurality of processes in accordance with a communication protocol. The system includes application specific instruction set processors (ASISPs) that provided computation support for the process. Each ASISP is capable of executing a subset of the functions of a communication protocol. A scheduler is used to schedule the ASISPs in a time-sliced algorithm so that each ASISP supports several processes. In this architecture, the ASISP actively performs computations for one of the supported processes (active process) at any given time. The state information of each process supported by a particular ASISP is stored in a memory bank that is uniquely associated with the ASISP. When a scheduler instructs an ASISP to change which process is the active process, the state information for the inactivated process is stored in the memory bank and the state information for the newly activated process is retrieved from the memory bank.
摘要:
A wireless communication system hosts a plurality of processes in accordance with a communication protocol. The system includes application specific instruction set processors (ASISPs) that provided computation support for the process. Each ASISP is capable of executing a subset of the functions of a communication protocol. A scheduler is used to schedule the ASISPs in a time-sliced algorithm so that each ASISP supports several processes. In this architecture, the ASISP actively performs computations for one of the supported processes (active process) at any given time. The state information of each process supported by a particular ASISP is stored in a memory bank that is uniquely associated with the ASISP. When a scheduler instructs an ASISP to change which process is the active process, the state information for the inactivated process is stored in the memory bank and the state information for the newly activated process is retrieved from the memory bank.
摘要:
A wireless communication system hosts a plurality of processes in accordance with a communication protocol. The system includes application specific instruction set processors (ASISPs) that provided computation support for the process. Each ASISP is capable of executing a subset of the functions of a communication protocol. A scheduler is used to schedule the ASISPs in a time-sliced algorithm so that each ASISP supports several processes. In this architecture, the ASISP actively performs computations for one of the supported processes (active process) at any given time. The state information of each process supported by a particular ASISP is stored in a memory bank that is uniquely associated with the ASISP. When a scheduler instructs an ASISP to change which process is the active process, the state information for the inactivated process is stored in the memory bank and the state information for the newly activated process is retrieved from the memory bank.
摘要:
A wireless communication system hosts a plurality of processes in accordance with a communication protocol. The system includes application specific instruction set processors (ASISPs) that provided computation support for the process. Each ASISP is capable of executing a subset of the functions of a communication protocol. A scheduler is used to schedule the ASISPs in a time-sliced algorithm so that each ASISP supports several processes. In this architecture, the ASISP actively performs computations for one of the supported processes (active process) at any given time. The state information of each process supported by a particular ASISP is stored in a memory bank that is uniquely associated with the ASISP. When a scheduler instructs an ASISP to change which process is the active process, the state information for the inactivated process is stored in the memory bank and the state information for the newly activated process is retrieved from the memory bank.
摘要:
An apparatus and method for adaptively introducing a compensating signal latency related to a signal latency of a data symbol decision circuit. Adaptive timing control circuitry, including an interpolating mixer implemented as a tapped delay line with correlated tap coefficients, introduces a latency adaptively and substantially matching the latency of the data decision circuit for use within an adaptive equalizer, thereby minimizing the mean-squared error of such decision circuit. This adaptive latency is used in generating the feedback error signal which, in turn, can be used by the feedforward equalizer for dynamically adjusting its adaptive filter tap coefficients.
摘要:
An adaptive signal equalizer with a feedforward filter in which the feedback error signal and corresponding incoming data signal are dynamically aligned in time using signal interpolation, and further, to control the precursor/postcursor filter taps configuration, thereby producing more adaptive filter tap coefficient signals for significantly improved and robust signal equalization.
摘要:
Systems and methods are disclosed to provide channel monitoring and/or performance monitoring for a communication channel. For example, in accordance with an embodiment of the present invention, an equalizer is disclosed that equalizes for channel distortions and also provides channel and performance monitoring information, such as for example bandwidth estimation, channel identification, signal-to-noise ratio, chromatic dispersion, and/or polarization-mode dispersion.
摘要:
An adaptive signal equalizer with a feedforward filter in which the feedback error signal and corresponding incoming data signal are dynamically aligned in time using signal interpolation, and further, to control the precursor/postcursor filter taps configuration, thereby producing more adaptive filter tap coefficient signals for significantly improved and robust signal equalization.