Abstract:
A method and device used to improve flying education, and reduce pilot student hazard when passing from simulators to the real aircraft, by introducing an intermediary stage where a simulator and a model radio-controlled aircraft with similar features as original is used in a system with many participants, an instructor, flight monitors, command center, mission control, audience located remotely and taking part in the same action via internet telecommunication. The simulator is used to measure biometric parameters of the pilots, certify them, and also for gaming, having fail-safe procedures embedded. System contains a flight-monitoring network, using both goniometry and radar devices, placed on surface and airborne, using these devices as signal repeaters for extensions of communication. The system may be used in missions dangerous to human crews, and by the complexity of simulation it improves the flying, as well as to improve the piloting of RC aircrafts.
Abstract:
An apparatus for providing text independent voice conversion may include a first voice conversion model and a second voice conversion model. The first voice conversion model may be trained with respect to conversion of training source speech to synthetic speech corresponding to the training source speech. The second voice conversion model may be trained with respect to conversion to training target speech from synthetic speech corresponding to the training target speech. An output of the first voice conversion model may be communicated to the second voice conversion model to process source speech input into the first voice conversion model into target speech corresponding to the source speech as the output of the second voice conversion model.
Abstract:
An apparatus for providing data clustering and mode selection includes a training element and a transformation element. The training element is configured to receive a first training data set, a second training data set and auxiliary data extracted from the same material as the first training data set. The training element is also configured to train a classifier to group the first training data set into M clusters based on the auxiliary data and the first training data set and train M processing schemes corresponding to the M clusters for transforming the first training data set into the second training data set. The transformation element is in communication with the training element and is configured to cluster the second training data set into M clusters based on features associated with the second training data set.
Abstract:
A hybrid approach is described for combining frequency warping and Gaussian Mixture Modeling (GMM) to achieve better speaker identity and speech quality. To train the voice conversion GMM model, line spectral frequency and other features are extracted from a set of source sounds to generate a source feature vector and from a set of target sounds to generate a target feature vector. The GMM model is estimated based on the aligned source feature vector and the target feature vector. A mixture specific warping function is generated each set of mixture mean pairs of the GMM model, and a warping function is generated based on a weighting of each of the mixture specific warping functions. The warping function can be used to convert sounds received from a source speaker to approximate speech of a target speaker.
Abstract:
An apparatus for providing efficient evaluation of feature transformation includes a training module and a transformation module. The training module is configured to train a Gaussian mixture model (GMM) using training source data and training target data. The transformation module is in communication with the training module. The transformation module is configured to produce a conversion function in response to the training of the GMM. The training module is further configured to determine a quality of the conversion function prior to use of the conversion function by calculating a trace measurement of the GMM.
Abstract:
An apparatus for providing voice conversion using temporal dynamic features includes a feature extractor and a transformation element. The feature extractor may be configured to extract dynamic feature vectors from source speech. The transformation element may be in communication with the feature extractor and configured to apply a first conversion function to a signal including the extracted dynamic feature vectors to produce converted dynamic feature vectors. The first conversion function may have been trained using at least dynamic feature data associated with training source speech and training target speech. The transformation element may be further configured to produce converted speech based on an output of applying the first conversion function.
Abstract:
It may be desirable to provide a way to collect high quality speech training data without undue burden to the user. Speech training data may be collected during normal usage of a device. In this way, the collection of speech training data may be effectively transparent to the user, without the need for a distinct collection mode from the user's point of view. For example, where the device is or includes a phone (such as a cellular phone), when the user makes or receives a phone call to/from another party, speech training data may be automatically collected from one or both of the parties during the phone call.
Abstract:
With respect to pandemics, restaurants, stadiums, cafeterias, and bars are among the most dangerous places to socialize due to the form of interaction. Exchange of bacteria and viruses are facilitated intensively from the mouth and nose via air transport in droplets of saliva and bodily fluids being deposited on surfaces, foods, and in the air. The present development creates a comfortable environment where the air-space of each customer is separated by invisible cold-hot air and vis-UV barriers, which take away bacteria and viruses, destroying them and preventing recirculation while offering pleasant, clean, and sanitized ambient conditions for a face to face meeting. An immersive experience can be provided with surrounding screens and gas therapy that may be customized according to the customer's preferences. Food distribution is performed with a robotic shuttle system and when the customer departs, an extensive cleanup is performed using chemicals and UV irradiation through robotic systems.
Abstract:
COVID-19 is a large virus with remarkable resilience, propagation and multiplication features that require complex technologic systems and manners to assure a reasonable protection. A transparent, multiuse face mask with valves and for inhalation of air from a specialized filter placed in a cleaner air space, and an exhalation valve that drives the exhaled air via a tube to a filter bladder placed on wrist and from there to a tube that has the release end near ground, or can be connected to the aspiration tube of the infrastructure, that removes it, preventing recirculation. The general convention that defines the usage method is that the building, buss, and any other enclosure provide clean antiseptic air above and consumer s have to release their exhalations down near floor from where the structure to remove them by a controlled air flow similar to clean rooms. The main condition is that people to place their exhalation exhaust sterilized and placed near ground in order to increase the probability to inhale clean sterile air at the head level. No filter is perfect, and no sterilization unit, therefore the enclosure has to deal with exhaust gas, and remove into the atmosphere safely. The work to keep people inside safe is done by both the enclosure that may provide vacuum lines to collect the exhaled air, and by the people who will use correctly the infrastructure. The system is designed for smart communities for everybody to wear for about 3 weeks when a covid-19 or other virus infection occurs to suppress its multiplication rate, without perturbation in their activity and then returning to normality.
Abstract:
Many pneumonia diseases and lung malfunctions can be quickly repaired using an improved lung lavage technique where the patient is rotated in specific 3D orientations to increase the efficiency of the lavage procedure. The process involves filling and emptying the lungs with fluid and rotating the patient makes this process “natural” and effective. Supplementary, a hydro-pneumatic system facilitates the operations with the patient sustained in various positions such as being immersed in water and having various control mechanisms such as variable pressures, temperatures, and performing assisted breathing. Additionally, immersed devices are implanted that “shake-up of alveolar wall” and other devices perform ultrasound imaging with a 0.1 mm resolution, a resolution in competition with stereoscopic X-ray. The bio-medical data acquisition system allows physicians to completely assess patient status in real time and guide the treatment to ensure optimum patient care, under quality assurance procedures.