Abstract:
A generator embodying the invention comprises a removable fuel tank that is easily accessible, and may be easily removed from the generator. The generator includes a frame that supports an engine and the fuel tank. The fuel tank is removably interconnected to the frame with at least one quick release fastener. The quick release fastener may include a bolt, a pivoting tab, a clamp, or other similar quick release fasteners. Preferably, the quick release fastener may be engaged by hand, and does not require additional tooling. A fuel line between the fuel tank and the engine includes a quick disconnect attachment that prevents fuel flow and easily detaches the fuel tank from the engine. The fuel tank may be removed from the frame, taken to a gasoline station for refilling, and reattached to the generator for operation.
Abstract:
The invention provides a hierarchically accessible monitoring system configured to be used with a standby generator, and a method of remotely accessing generator information from a standby generator. The hierarchically accessible monitoring system includes an interface unit configured to receive information from the standby generator and to communicate the generator information, and a remote data server in communication with the interface unit. The remote data server receives the generator information from the interface unit, stores the generator information, and controls access to the generator information based upon at least two hierarchical levels, each hierarchical level having different access privileges. The hierarchically accessible monitoring system also includes a user interface configured to display the generator information from the remote data server to at least one user. The user has access privileges to read the generator information based upon the user's assigned hierarchical level.
Abstract:
A system for providing electric power and a method of controlling the same. The system includes a local power source, a non-neutral-bonded connector electrically connected to the local power source, a neutral-bonded connector, and a conductor. The system also includes a first connector that provides an electrical connection between the non-neutral-bonded connector and the neutral-bonded connector in a first configuration of the system, and a second connector that provides an electrical connection between the non-neutral-bonded connector and the conductor in a second configuration of the system.
Abstract:
A portable power source for starting a variety of outdoor power equipment, particularly a portable generator. The portable power source generally includes a housing, an electrochemical power supply, a switch, and a connector connected to the switch. The switch may be electrically connected to the electrochemical power supply and, using a conductor (e.g., a cable), the connector is operable to be electrically connected to a starter motor associated with the outdoor power equipment. The portable power source is adapted to be used as a primary power source and as an auxiliary power source. The portable power source can also includes an integrated light, an air compressor, a power supply indicator, and one or more inputs and outputs to receive and provide direct current (“DC”) and alternating current (“AC”).
Abstract:
A load monitoring apparatus for monitoring the load applied to a portable generator. The apparatus includes a sensor, and a humanly perceptible indicator that indicates at least one discontinuous load power frequency.
Abstract:
A backup power management system connectable to a primary power source and a secondary power source, and a method of operating the same. The system includes a transfer switch connectable to the primary and secondary power sources, and a plurality of circuit branches connected to the transfer switch. The circuit branches include first and second remotely operated branches having first and second managed circuit breakers, respectively. The system further includes a controller connected to the first and second managed circuit breakers. The controller controls the managed circuit breakers, thereby controlling the current through the first and second managed circuit branches.