Abstract:
A capacitor connected to the battery in parallel; a step-up converter connected to the battery and the first capacitor; another capacitor connected to the step-up converter in parallel; an inverter connected to the step-up converter and the other capacitor in parallel; a potential line connecting a negative-side terminal of the battery to the capacitor, the step-up converter, the other capacitor, and the inverter in the stated order; and a bypass path formed, when a lower arm switching device of the step-up converter has a short-circuit failure, from cutting the reference electric potential line at a position including at least any one of a position between the negative-side terminal and the capacitor and another position between the step-up converter and the other capacitor. The bypass path bypasses the lower arm switching device and connects the negative-side terminal to the inverter.
Abstract:
A circuit arrangement has a bidirectional AC/DC converter connected to a first side of a DC/DC converter at a DC side of the AC/DC converter via first electric switch. The AC/DC converter is connected to a second side of the DC/DC converter at the DC side of the AC/DC converter via a second electric switch. The first side of the DC/DC converter is connected to a third electric switch and can be connected to an energy storing device via said switch. The second side of the DC/DC converter is connected to a fourth electric switch and can be connected to an energy generating device via said switch. The AC/DC converter can be connected to the electric supply grid at the AC side of the AC/DC converter. A control device controls the switches and the converters.
Abstract:
We describe a photovoltaic power conditioning unit for delivering power from multiple photovoltaic panels to an ac mains power supply output, comprising: a dc input for receiving power from multiple photovoltaic panels; an ac output for delivering ac power to the ac supply; a bank of electrolytic energy storage capacitors for storing energy from the dc source for delivery to the ac supply; a dc-to-ac converter coupled to the ac output and having an input coupled to the bank for converting energy stored in the bank to ac power for the ac supply; and further comprising: a plurality of sense and control circuits, one for each capacitor in the bank, wherein each circuit is coupled in series with a capacitor, and is configured to disconnect the associated capacitor from the bank upon detection of a current flow through the associated capacitor of greater than a threshold current value.
Abstract:
A system includes a control module and a monitor module. The control module selectively operates a component of the system in an ON state. The system receives power from an electrical grid. The monitor module selectively detects a fault event of the electrical grid in response to (i) an amount of current drawn by the component or (ii) a voltage of power received by the component. In response to detecting the fault event, the control module switches the component from the ON state to a second state, determines a first delay period according to a random process, identifies an apparent conclusion of the fault event, and in response to the apparent conclusion of the fault, waits for the first delay period before switching the component back to the ON state. The component consumes less power in the second state than in the ON state.
Abstract:
According to one embodiment, there is provided a power-fluctuation reducing apparatus in a power generation system to control a converter connected to the power generation system and connected to secondary batteries. The power-fluctuation reducing apparatus includes adjusting direct current voltages output from the secondary batteries, respectively, detecting the directing current voltages output from the secondary batteries, respectively, controlling to adjust the direct current voltages output from the secondary batteries to make the direct current voltages uniform, based on the detected direct current voltages, and controlling the converter to reduce power fluctuations in the power generation system.
Abstract:
A wireless power transmission unit according to the present invention transmits power wirelessly from a power transmitting section 100 to a power receiving section 200 through a resonant magnetic field. The unit includes: the power transmitting section 100, which resonates at a resonant frequency f0; at least one relay section 300, which can resonate at a frequency that is selected from multiple frequencies including the resonant frequency f0; and a resonance control section 600 that outputs information that specifies a resonance condition to be imposed on the relay section 300 according to the arrangement of the power receiving section 200 and that makes the relay section 300 resonate on the resonance condition that has been specified in accordance with that information.
Abstract:
A circuit arrangement has a bidirectional AC/DC converter connected to a first side of a DC/DC converter at a DC side of the AC/DC converter via first electric switch. The AC/DC converter is connected to a second side of the DC/DC converter at the DC side of the AC/DC converter via a second electric switch. The first side of the DC/DC converter is connected to a third electric switch and can be connected to an energy storing device via said switch. The second side of the DC/DC converter is connected to a fourth electric switch and can be connected to an energy generating device via said switch. The AC/DC converter can be connected to the electric supply grid at the AC side of the AC/DC converter. A control device controls the switches and the converters.
Abstract translation:电路装置具有通过第一电开关连接到AC / DC转换器的DC侧的DC / DC转换器的第一侧的双向AC / DC转换器。 AC / DC转换器通过第二电开关连接到AC / DC转换器的DC侧的DC / DC转换器的第二侧。 DC / DC转换器的第一侧连接到第三电开关,并且可以经由所述开关连接到能量存储装置。 DC / DC转换器的第二侧连接到第四电开关,并且可以经由所述开关连接到能量产生装置。 AC / DC转换器可以连接到AC / DC转换器AC侧的电源网。 控制装置控制开关和转换器。
Abstract:
A protection method in a distributed power system including of DC power sources and multiple power modules which include inputs coupled to the DC power sources. The power modules include outputs coupled in series with one or more other power modules to form a serial string. An inverter is coupled to the serial string. The inverter converts power input from the string and produces output power. When the inverter stops production of the output power, each of the power modules is shut down and thereby the power input to the inverter is ceased.
Abstract:
A power switching device, a power switching method, and a projection device using the power switching device are provided. In the power switching method, a first power and a second power are received, and the voltage level of the first power is compared with the voltage level of the second power. One of the first power and the second power having the higher voltage level is sustained by using one of the first power and the second power having the lower voltage level until one of the first power and the second power having the higher voltage level stabilizes. At least one of the first power and the second power having the higher voltage level and being already stabilized is output as an output voltage.
Abstract:
A system and method for supplying power to a variable speed motor for rotating a shaft may include generating an A/C output having a variable frequency corresponding to speed of a prime mover, where the speed of the prime mover is equal to or greater than a predetermined speed limit. The A/C output of the prime mover may be distributed to the variable speed motor such that the speed of the variable speed motor is varied relative to the frequency of the A/C output. The variable speed motor may be electrically disconnected from the A/C power when the speed of the prime mover being used to drive the variable speed motor is equal to or within a predetermined range of the predetermined speed limit. An alternate A/C output may be distributed to the variable speed motor after the A/C power is electrically disconnected from the variable speed motor.