Abstract:
A method for identifying an optimal image frame is presented. The method includes receiving a selection of an anatomical region of interest in an object of interest. Furthermore, the method includes obtaining a plurality of image frames corresponding to the selected anatomical region of interest. The method also includes determining a real-time indicator corresponding to the plurality of acquired image frames, wherein the real-time indicator is representative of quality of an image frame. In addition, the method includes communicating the real-time indicator to aid in selecting an optimal image frame. Systems and non-transitory computer readable medium configured to perform the method for identifying an optimal image frame are also presented.
Abstract:
A method for image alignment is disclosed. In one embodiment, the method includes acquiring a facial image of a person and using a discriminative face alignment model to fit a generic facial mesh to the facial image to facilitate locating of facial features. The discriminative face alignment model may include a generative shape model component and a discriminative appearance model component. Further, the discriminative appearance model component may have been trained to estimate a score function that minimizes the angle between a gradient direction and a vector pointing toward a ground-truth shape parameter. Additional methods, systems, and articles of manufacture are also disclosed.
Abstract:
A technique for optimizing object recognition is disclosed. The technique includes receiving at least one image of an object and at least one reference image. The technique further includes identifying at least one performance metric corresponding to an object recognition task. The identified performance metric is optimized to generate the corresponding optimized performance metric by determining an optimal subspace based on a determined objective function corresponding to the object recognition task and a difference between the received image and the corresponding reference image. Subsequently, the technique includes comparing the received image with the reference image based on the optimized performance metric for performing the object recognition task.
Abstract:
A system and method for estimating a set of landmarks for a large image ensemble employs only a small number of manually labeled images from the ensemble and avoids labor-intensive and error-prone object detection, tracking and alignment learning task limitations associated with manual image labeling techniques. A semi-supervised least squares congealing approach is employed to minimize an objective function defined on both labeled and unlabeled images. A shape model is learned on-line to constrain the landmark configuration. A partitioning strategy allows coarse-to-fine landmark estimation.
Abstract:
A biometric sample training device, a biometric sample quality assessment device, a biometric fusion recognition device, an integrated biometric fusion recognition system and example processes in which each may be used are described. Wavelets and a boosted classifier are used to assess the quality of biometric samples, such as facial images. The described biometric sample quality assessment approach provides accurate and reliable quality assessment values that are robust to various degradation factors, e.g., such as pose, illumination, and lighting in facial image biometric samples. The quality assessment values allow biometric samples of different sample types to be combined to support complex recognition techniques used by, for example, biometric fusion devices, resulting in improved accuracy and robustness in both biometric authentication and biometric recognition.
Abstract:
A method of producing an enhanced Active Appearance Model (AAM) by combining images of multiple resolutions is described herein. The method generally includes processing a plurality of images each having image landmarks and each image having an original resolution level. The images are down-sampled into multiple scales of reduced resolution levels. The AAM is trained for each image at each reduced resolution level, thereby creating a multi-resolution AAM. An enhancement technique is then used to refine the image landmarks for training the AAM at the original resolution level. The landmarks for training the AAM at each level of reduced resolution is obtained by scaling the landmarks used at the original resolution level by a ratio in accordance with the multiple scales.
Abstract:
A method for identifying an optimal image frame is presented. The method includes receiving a selection of an anatomical region of interest in an object of interest. Furthermore, the method includes obtaining a plurality of image frames corresponding to the selected anatomical region of interest. The method also includes determining a real-time indicator corresponding to the plurality of acquired image frames, wherein the real-time indicator is representative of quality of an image frame. In addition, the method includes communicating the real-time indicator to aid in selecting an optimal image frame. Systems and non-transitory computer readable medium configured to perform the method for identifying an optimal image frame are also presented.
Abstract:
A novel technique for unsupervised feature selection is disclosed. The disclosed methods include automatically selecting a subset of a feature of an image. Additionally, the selection of the subset of features may be incorporated with a congealing algorithm, such as a least-square-based congealing algorithm. By selecting a subset of the feature representation of an image, redundant and/or irrelevant features may be reduced or removed, and the efficiency and accuracy of least-square-based congealing may be improved.
Abstract:
A method for face model fitting comprising, receiving a first observed image, receiving a second observed image, and fitting an active appearance model of a third image to the second observed image and the first observed image with an algorithm that includes a first function of a mean-square-error between a warped image of the second observed image and a synthesis of the active appearance model and a second function of a mean-square-error between the warped image of the second observed image and an appearance data of the first observed image.
Abstract:
A method for automatically identifying defects in turbine engine blades is provided. The method comprises acquiring one or more radiographic images corresponding to one or more turbine engine blades and identifying one or more regions of interest from the one or more radiographic images. The method then comprises extracting one or more geometric features based on the one or more regions of interest and analyzing the one or more geometric features to identify one or more defects in the turbine engine blades.