Abstract:
A method of automatic defect recognition includes receiving a initial set of inspection image data of a scanned object from a scanning machine; applying a first image analysis algorithm to this set of inspection image data; then removing from the set of inspection image data any defect-free image regions, so as to retain a set of analyzed inspection image data; applying an additional image analysis algorithm(s) to the set of analyzed inspection image data, wherein the additional algorithm(s) has a higher computational cost than the first image analysis algorithm; and based on the applying of the additional image analysis algorithm(s), removing from the first set of inspection image data a second set of defect-free image regions, thereby retaining a set of twice-analyzed inspection image data.
Abstract:
A method for identifying defects in radiographic image data corresponding to a scanned object is provided. The method includes acquiring radiographic image data corresponding to a scanned object. In one embodiment, the radiographic image data includes an inspection test image and a reference image corresponding to the scanned object. The method includes identifying one or more regions of interest in the reference image and aligning the inspection test image with the regions of interest identified in the reference image, to obtain a residual image. The method further includes identifying one or more defects in the inspection test image based upon the residual image and one or more defect probability values computed for one or more pixels in the residual image.
Abstract:
A method for determining 3D distances on a 2D pixelized image of a part or object includes acquiring a real 2D pixelized image of the object, creating a simulated image of the object using the 3D CAD model and the 2D pixelized image, determining a specified cost function comparing the simulated image with the real 2D pixilated image and repositioning the simulated image in accordance with iterated adjustments of a relative position between the CAD model and the 2D pixilated image to change the simulated image until the specified cost function is below a specified value. Then, the workstation is used to generate a 3D distance scale matrix using the repositioned simulated image, and to measure and display distances between selected pixels on a surface of the real image using 2D distances on the 2D pixelized image of the object and the 3D distance scale matrix.
Abstract:
A method of automatic defect recognition includes receiving a initial set of inspection image data of a scanned object from a scanning machine; applying a first image analysis algorithm to this set of inspection image data; then removing from the set of inspection image data any defect-free image regions, so as to retain a set of analyzed inspection image data; applying an additional image analysis algorithm(s) to the set of analyzed inspection image data, wherein the additional algorithm(s) has a higher computational cost than the first image analysis algorithm; and based on the applying of the additional image analysis algorithm(s), removing from the first set of inspection image data a second set of defect-free image regions, thereby retaining a set of twice-analyzed inspection image data.
Abstract:
A method for identifying defects in radiographic image data corresponding to a scanned object is provided. The method includes acquiring radiographic image data corresponding to a scanned object. In one embodiment, the radiographic image data includes an inspection test image and a reference image corresponding to the scanned object. The method includes identifying one or more regions of interest in the reference image and aligning the inspection test image with the regions of interest identified in the reference image, to obtain a residual image. The method further includes identifying one or more defects in the inspection test image based upon the residual image and one or more defect probability values computed for one or more pixels in the residual image.
Abstract:
A method for detecting, quantifying, staging, reporting, and/or tracking of a disease includes providing analysis software configured to detect, quantify, stage, report, and/or track a disease utilizing images of a patient. The analysis software is executable on a personal computer of a patient. Patients are then imaged utilizing a medical imaging apparatus and medical images of the patient produced by the imaging apparatus are downloaded to the personal computer of the patient. The imaging and downloading are repeated a plurality of times at intervals selected to provide the analysis software with sufficient images to detect, quantify, stage, report, and/or track the disease in the patient.
Abstract:
A method for automatically identifying defects in turbine engine blades is provided. The method comprises acquiring one or more radiographic images corresponding to one or more turbine engine blades and identifying one or more regions of interest from the one or more radiographic images. The method then comprises extracting one or more geometric features based on the one or more regions of interest and analyzing the one or more geometric features to identify one or more defects in the turbine engine blades.
Abstract:
A method and system for presenting images of an object of interest is provided. The method includes producing one or more cine loops of images from at least one of multiple projection views or multiple reconstructed 3D images including a 3D volume obtained from one or more beamlines. The method also includes generating at least one combined image including a first component and a second component wherein the first component and the second component each include one of a baseline image or the one or more cine loops of images. The combined image is generated via at least one of superimposing the first component and the second component, displaying the first component adjacent to the second component, and toggling between the first component and the second component. The method also includes displaying the at least one combined image.
Abstract:
A system and method for ascertaining the identity of an object within an enclosed article. The system includes an acquisition subsystem, a reconstruction subsystem, a computer-aided detection (CAD) subsystem, and an alarm resolution subsystem. The acquisition subsystem communicates view data to the reconstruction subsystem, which reconstructs it into image data and communicates it to the CAD subsystem. The CAD subsystem analyzes the image data to ascertain whether it contains any area of interest. A feedback loop between the reconstruction and CAD subsystems allows for continued, more extensive analysis of the object. Other information, such as risk variables or trace chemical detection information may be communicated to the CAD subsystem to dynamically adjust the computational load of the analysis.
Abstract:
An anomaly detection method and system for comparing a scanned object to an idealized object is provided. The anomaly detection method includes generating a three-dimensional reference model of the idealized object. The anomaly detection method further includes acquiring at least one two-dimensional inspection test image of the scanned object. The anamoly detection method also includes determining a two-dimensional reference image from the three-dimensional reference model using multiple pose parameters, wherein the two-dimensional reference image corresponds to the same view of the three-dimensional reference model of the idealized object as the view of the two-dimensional inspection test image of the scanned object. The anamoly detection method further includes identifying one or more defects in the inspection test image via automated defect recognition technique.