Abstract:
An implantable medical lead configured for improved MRI safety and heating reduction performance is disclosed herein. In one embodiment, the lead includes a tubular body having a proximal end and a distal end with a lead connector near the proximal end. In this embodiment the lead further includes a conductor extending longitudinally within the tubular body and having a proximal end that is electrically coupled to the connector and a distal end electrically coupled to a contact pin. The lead in this embodiment further includes a filter element electrically coupled to a distal end of the contact pin and a flange electrically coupled between a proximal end of the filter element and a proximal portion of an electrode. In this embodiment the flange and the proximal portion of the electrode form at least a first part of a hermetic chamber enclosing the filter element.
Abstract:
An implantable medical lead is disclosed herein. In one embodiment, the lead includes a body and an electrical pathway. The body may include a distal portion with an electrode and a proximal portion with a lead connector end. The electrical pathway may extend between the electrode and lead connector end and include a coiled inductor including a first portion and a second portion at least partially magnetically decoupled from the first portion. The first portion may include a first configuration having a first SRF. The second portion may include a second configuration different from the first configuration. The second configuration may have a second SRF different from the first SRF. For example, the first SRF may be near 64 MHz and the second SRF may be near 128 MHz.
Abstract:
The disclosure relates in some aspects to an implantable pressure sensor and a method of measuring pressure. In some embodiments pressure may be measured through the use of an implantable lead incorporating one or more pressure sensors. In some aspects a pressure sensor is implemented in a micro-electromechanical system (“MEMS”) that employs direct mechanical sensing. A biocompatible material is attached to one or more portions of the MEMS sensor to facilitate implant in a body of a patient. The MEMS sensor may thus be incorporated into an implantable lead for measuring blood pressure in, for example, one or more chambers of the patient's heart.
Abstract:
An implantable lead is provided that includes a lead body configured to be implanted in a patient. The lead body has a distal end and a proximal end, and a lumen extending between the distal and proximal ends and includes a connector assembly provided at the proximal end of the lead body. The connector assembly is configured to connect to an implantable medical device and includes an electrode provided proximate to the distal end of the lead body with the electrode configured to at least one of deliver stimulating pulses and sense electrical activity. A multi-layer coil is located within the lumen and extends at least partially along a length of the lead body. The coil includes a first winding formed with multiple winding turns, the winding turns being segmented in an alternating pattern of insulated segments and non-insulated segments along the length of the lead body. The multi-layer coil further includes a winding turn connective layer extending along and interconnecting the winding turns within at least one of the non-insulated segments. The multi-layer coil further includes a first winding formed with multiple winding turns, the winding turns being segmented into an alternating pattern of insulated segments and non-insulated segments along a length of the winding with a winding turn connective layer extending along and interconnecting the winding turns within at least one of the non-insulated segments.
Abstract:
An in-ear hearing aid device that provides users with a customizable ear piece to fit the ear canal of any user. More specifically, the present invention can comprises of a hard case to hold all the electronics of the device with a hearing device jacket that envelops the device. An ear mould is connected to the jacket and allows the user to insert the device into the ear canal to enhance the user's hearing.
Abstract:
Implantable medical leads have reduced diameter while providing for optimized mechanical and electrical properties, by reducing the diameters of the conducting cables used within the leads for sensing and delivery of therapeutic electrical stimulation. In an embodiment, conducting filaments within a cable have oval cross-sectional areas. Suitably orienting the oval filaments increases the contact surface between adjacent filaments, broadly distributing the pressure between filaments and reducing fretting fatigue, while the oval cross-sectional area also increases conductivity. In an embodiment, non-conducting coatings around filaments within a cable, or around groups of filaments organized into cable-layers, reduce fretting fatigue. In an embodiment, the cross-sectional area of filaments decreases as the filaments are positioned at increasing radial distances from the center of the cable. In an embodiment, the relative composition of various filament metals and/or alloys is varied in filaments at different radial distances from the center of the cable.
Abstract:
An implantable lead is provided that includes a lead body configured to be implanted in a patient. The lead body has a distal end and a proximal end, and a lumen extending between the distal and proximal ends and includes a connector assembly provided at the proximal end of the lead body. The connector assembly is configured to connect to an implantable medical device and includes an electrode provided proximate to the distal end of the lead body with the electrode configured to at least one of deliver stimulating pulses and sense electrical activity. A multi-layer coil is located within the lumen and extends at least partially along a length of the lead body. The coil includes a first winding formed with multiple winding turns, the winding turns being segmented in an alternating pattern of insulated segments and non-insulated segments along the length of the lead body. The multi-layer coil further includes a winding turn connective layer extending along and interconnecting the winding turns within at least one of the non-insulated segments. The multi-layer coil further includes a first winding formed with multiple winding turns, the winding turns being segmented into an alternating pattern of insulated segments and non-insulated segments along a length of the winding with a winding turn connective layer extending along and interconnecting the winding turns within at least one of the non-insulated segments.
Abstract:
A lead construction includes a lead body, an electrically conductive element disposed therein, and a shield layer disposed over the conductive element formed from a composite material comprising a polymer material and a non-ferrous particulate material. The non-ferrous material can include gold, platinum, iridium, nickel, cobalt, chromium, molybdenum, carbon/graphite powders, and alloys thereof. The composite material has a non-ferrous particulate content of from about 40 to 90 volume percent, and the shield layer has a thickness of from about 0.1 to 1 mm. The composite material forms an electrically conductive layer when exposed to RF having a frequency of greater than about 64 MHz. A layer of insulating material may be interposed between the shield layer and the conductive element. The shield layer can be part of the lead body, can be an intermediate layer within the lead body, or can be an outer surface of the lead body.
Abstract:
A practitioner device for facilitating at least one of testing and treatment of at least one auditory disorder is disclosed. The practitioner device includes a user interface configured for receiving an input from a practitioner. Further, the practitioner device includes a communication interface configured for communicating information between the practitioner device and at least one of a mobile device and another practitioner device over at least one of a wired communication channel and a wireless communication channel, wherein the information is based on the input, wherein the information corresponds to at least one of at least one auditory test and at least one auditory treatment procedure, wherein the mobile device facilitates at least one of testing of at least one auditory disorder and treatment of at least one auditory disorder.
Abstract:
An implantable medical lead is disclosed herein. The lead may include a body and an electrical pathway. The body may include a distal portion with an electrode and a proximal portion with a lead connector end. The electrical pathway may extend between the electrode and lead connector end and may include a coiled inductor including first and second electrically conductive filar cores. The first and second filar cores may be physically joined into a unified single piece proximal terminal on a proximal end of the coiled inductor. The first and second cores may be physically joined into a unified single piece distal terminal on a distal end of the coiled inductor. The first and second filar cores may be helically wound into a coiled portion between the proximal and distal terminals, the filar cores being electrically isolated from each other in the coiled portion. The proximal terminal may be electrically coupled to a portion of the electrical pathway extending to the lead connector end, and the distal terminal may be electrically coupled to a portion of the electrical pathway extending to the electrode.