Abstract:
A system for acquiring data of a multi-channel signal includes a channel-voltage transmission module disposed in a shield room blocking electromagnetic waves, connected with a plurality of channels from which analog signals are output, and configured to generate a serial digital signal having information about an analog signal and information about a channel from which the analog signal is output, and an optical fiber cable through which the serial digital signal is transmitted from the channel-voltage transmission module to the outside of the shield room.
Abstract:
A mobile terminal and a method of forming a human network using the same are provided. The method for forming a human network includes selecting a person of interest from an image; selecting a relay person from the first stored image to which information about the selected person of interest is relayed through facial recognition; and acquiring the personal information for the selected person of interest from a mobile terminal of the selected relay person.
Abstract:
Disclosed is an effective high-speed encoding method using a parity-check matrix proposed in an IEEE 802.1x standard for high-speed low-density parity-check encoding. In the prior art, encoding was performed by blocking and dividing the parity-check matrix of the LDPC code and through relevant matrix equations, or encoding was performed by an encoding apparatus that divides a matrix multiplication operation of a generated matrix acquired by using an arbitrary parity-check matrix of a quasi-cyclic (QC) LDPC code and information vectors into two sequential steps and implements each step as a cyclic shift-register. Unlike the prior art, the present invention provides an effective high-speed encoding method having low additional complexity by using a quasi-cyclic characteristic of a parity-check matrix as well as an encoding method through generation of a temporary parity bit, generation of a correction bit, and correction of a parity bit by using the parity-check matrix having a dual-diagonal parity structure proposed in the standard.
Abstract:
The ultra-sensitive susceptibility detection apparatus of anharmonic resonance measurement type using an atomic magnetometer detects a change in susceptibility by a specimen containing an object to be measured. The apparatus includes an atomic magnetometer. The atomic magnetometer includes a cell containing an alkaline metallic atom, a light source for magnetically polarizing the alkaline metallic atom of the cell, and a bias magnetic field applicator for applying a bias magnetic field to adjust a measuring resonance frequency of the alkaline metallic atom. The apparatus includes an excitation magnetic field applicator for applying an excitation magnetic fields of different frequencies to magnetically excite the specimen, but not to couple the excitation field directly to the measuring atomic resonance frequency, and a measuring device for measuring a change in magnetic polarization of the alkaline metallic atom, which is affected by a magnetic field caused by the specimen being magnetically excited by the excitation magnetic field.
Abstract:
The present invention relates to a compound for N-terminal substitution of polypeptides which is used in sequencing and quantifying amino acids and a method for sequencing and quantifying an amino acid sequence using the same. The method for sequencing and quantifying amino acids in accordance with the present invention leads to a relative quantitative analysis of proteins with very high reliability, and can distinctively discriminate between y-type ions and b-type ions on the MS/MS spectra, providing the means for realization of high-reliability protein identification.
Abstract:
Provided is a layout method for protein-protein interaction networks based on a seed protein, which is for performing multiple stages of nesting centered on a node having a high degree of physical relationship, and performing multiple stages of extension and force directed placement (FDP) with respect to a final nest graph. The layout method includes the steps of: a) extracting a node list of each sub-graph constituting a protein-protein interaction network, and aligning the node list according to adjacency of nodes; b) selecting a seed protein from the aligned node list according to node priority and nest relationship with another node; c) nesting adjacent nodes centered on the selected seed protein to generate a nested node; and d) selecting an initial position of the generated nested node, placing the nodes of the nested nodes on respective division points, centered on the seed protein, and then performing layout.