Abstract:
A method for inspecting an object is provided. The method includes applying a pulsed excitation signal to the object and detecting a transient response signal to the pulsed excitation signal. The method also includes convolving the transient response signal with a plurality of orthogonal functions to generate a plurality of orthogonal components.
Abstract:
A method and system for inspecting an object is provided. In accordance with embodiments of the method, a thermal excitation pulse is applied to an object undergoing evaluation. A transient thermal signal from the object is detected in response to the thermal excitation pulse. Two or more orthogonal functions are applied to the transient thermal signal based on a defined time interval to generate two or more orthogonal components. The object is assessed for defects at different depths using the two or more orthogonal components.
Abstract:
The invention provides a battery sensing system comprising a battery module comprising a plurality of battery cells, at least one sensor coil coupled to or placed adjacent to one of more of the plurality of battery cells to determine cell expansion during cell operation, and a battery management system comprising one or more processors and/or microcontrollers that control operation of the plurality of battery cells.
Abstract:
Present embodiments include eddy current array probes having differential coils capable of detecting both long and short flaws in a test specimen and, additionally or alternatively, multiplexed drive coils. For example, an eddy current array probe may include a first plurality of eddy current channels disposed in a first row and a second plurality of eddy current channels disposed in a second row. The first plurality and second plurality of eddy current channels overlap in a first direction but do not overlap in a second direction. The probe also includes a semi-circular drive coil disposed proximate to the first plurality and second plurality of eddy current channels and configured to generate a probing magnetic field for each sense coil of the eddy current channels.
Abstract:
A method of inspecting a test part is provided. The method includes positioning a coil on a surface of the test part and exciting the coil at a resonance frequency. The method also includes determining at least one of a resonance frequency shift and a quality factor of the coil and estimating an electrical conductivity of the test part based on at least one of the resonance frequency shift and the quality factor of the coil. The method further includes obtaining depth profile of residual stress using conductivity measurements at various resonance frequencies.
Abstract:
A method of inspecting a test part is provided. The method includes positioning an eddy current probe on a surface of the test part and scanning the test part using the eddy current probe to generate a first signal corresponding to a no lift-off condition of the test part. The method further includes positioning the eddy current probe at a pre-determined distance from the surface of the test part and scanning the test part using the eddy current probe positioned at the pre-determined distance from the test part to generate a second signal corresponding to a lift-off condition of the test part. The method also includes processing the first and second signals to estimate an electrical conductivity of the test part.
Abstract:
In some aspects, the present invention provides a method for estimating at least one measurement/object property of a metal object. The method includes generating a time-varying eddy current in a wall of the metal object utilizing a pulsed-signal transmitter. The method further includes measuring the time-varying eddy current, fitting the time-varying measured eddy current to a parameterized polynomial, and interpreting the parameterized polynomial to determine one or more measurement/object properties of the metal object.
Abstract:
A method for imaging an object is provided. The method includes acquiring tomographic image data of the object at a plurality of frequencies, generating a composite image of the object at each of the plurality of frequencies using the acquired tomographic image data, determining a scaling factor for a first material at each of the plurality of frequencies, determining a scaling factor for a second material at each of the plurality of frequencies, and decomposing the composite images into a first discrete image and a second discrete image using the determined scaling factors, wherein the first discrete image contains any region of the object composed of the first material and the second discrete image contains any region of the object composed of the second material.
Abstract:
A method for detecting contraband is provided. The method includes acquiring tomographic image data of a subject at a plurality of frequencies using low frequency electromagnetic tomography, generating a composite image of the subject at each of the plurality of frequencies using the acquired tomographic image data, determining a differentiation parameter for a tissue material at each of the plurality of frequencies, determining a differentiation parameter for a non-tissue material at each of the plurality of frequencies, decomposing the composite images into a tissue image and a non-tissue image using the determined differentiation parameters, wherein the tissue image contains any region of the subject composed of the tissue material and the non-tissue image contains any region of the subject composed of the non-tissue material, and determining whether the non-tissue image contains any non-tissue material.
Abstract:
A method of inspecting a test part is provided. The method includes positioning an eddy current probe on a surface of the test part and scanning the test part using the eddy current probe to generate a first signal corresponding to a no lift-off condition of the test part. The method further includes positioning the eddy current probe at a pre-determined distance from the surface of the test part and scanning the test part using the eddy current probe positioned at the pre-determined distance from the test part to generate a second signal corresponding to a lift-off condition of the test part. The method also includes processing the first and second signals to estimate an electrical conductivity of the test part.