Abstract:
Disclosed are embodiments of methods for reconstructing x-ray projection data (e.g., one or more sinograms) acquired using a multi-source, inverse-geometry computed tomography (“IGCT”) scanner. One embodiment of a first method processes an IGCT sinogram by rebinning first in “z” and then in “xy,” with feathering applied during the “xy” rebinning. This produces an equivalent of a multi-axial 3rd generation sinogram, which may be further processed using a parallel derivative and/or Hilbert transform. A TOM-window (with feathering) technique and a combined backprojection technique may also be applied to produce a reconstructed volume. An embodiment of a second method processes an IGCT sinogram using a parallel derivative and/or redundancy weighting. The second method may also use signum weighting, TOM-windowing (with feathering), backprojection, and a Hilbert Inversion to produce another reconstructed volume.
Abstract:
Approaches are described for generating an initial reconstruction of CT data acquired using a wide-cone system. The initial reconstruction may be processed (such as via a non-linear operation) to correct frequency omissions and/or errors in the reconstruction. Corrected frequency information may then be added to the reconstruction to improve the reconstructed image.
Abstract:
A method for analytically reconstructing a multi-axial computed tomography (CT) dataset, acquired using one or more longitudinally-offset x-ray beams emitted from multiple x-ray sources is provided. The method comprises acquiring one or more CT axial projection datasets, wherein the CT axial projection datasets are acquired using less than a full scan of data. The method further comprises reconstructing the CT axial projection datasets to generate a reconstructed image volume. The reconstruction comprises back projecting one or more voxels comprising the multi-axial CT dataset, along one or more projection views, based upon a cone-angle weight determined for the voxels, wherein the cone-angle weight for the voxels is determined along a longitudinal direction.
Abstract:
A technique is provided for imaging a field of view using an X-ray source comprising two or more emission points. The two or more emission points may be independently operated. Independent operation of the two or more emission points in performed in accordance with a list of commands that specifies the operation of the emission points. The list of commands, in one embodiment, is stored in a sequence buffer. In other embodiments, the list of commands is generated for a given usage, without being stored in a sequence buffer.
Abstract:
A technique is provided for imaging a field of view using an X-ray source comprising two or more emission points. The two or more emission points may be independently operated. Independent operation of the two or more emission points in performed in accordance with a list of commands that specifies the operation of the emission points. The list of commands, in one embodiment, is stored in a sequence buffer. In other embodiments, the list of commands is generated for a given usage, without being stored in a sequence buffer.
Abstract:
A method for analytically reconstructing a multi-axial computed tomography (CT) dataset, acquired using one or more longitudinally-offset x-ray beams emitted from multiple x-ray sources is provided. The method comprises acquiring one or more CT axial projection datasets, wherein the CT axial projection datasets are acquired using less than a full scan of data. The method further comprises reconstructing the CT axial projection datasets to generate a reconstructed image volume. The reconstruction comprises backprojecting one or more voxels comprising the multi-axial CT dataset, along one or more projection views, based upon a cone-angle weight determined for the voxels, wherein the cone-angle weight for the voxels is determined along a longitudinal direction.
Abstract:
A CT imaging system includes a rotatable gantry having an opening to receive an object to be scanned. A plurality of x-ray emission sources are attached to the rotatable gantry, each x-ray emission source configured to emit x-rays in a conebeam toward the object. The CT imaging system also includes a plurality of x-ray detector arrays attached to the gantry and positioned to receive x-rays passing through the object. At least one x-ray detector array of the plurality of x-ray detector arrays is configured to receive x-rays from more than one x-ray emission source.
Abstract:
Systems and methods are provided for acquiring and reconstructing projection data that is mathematically complete or sufficient using a computed tomography (CT) system having stationary distributed X-ray sources and detector arrays. In one embodiment, a non-sequential activation is employed to acquire mathematically complete or sufficient projection data. In another embodiment, a distributed source is provided as a generally semicircular segment. In such an embodiment, an alternating activation scheme may be employed to allow one or more helices of image data to be acquired.
Abstract:
A system and method for CT projection extrapolation are provided. The method comprises receiving a CT projection for extrapolation. The method also comprises selecting a target patch comprising at least one pixel of a row to be extrapolated. The method further comprises generating a correlation profile between the target patch and one or more source patches, wherein the source patches comprise measured pixels in the CT projection in one or more rows adjacent to the target patch. The projection data is generated for at least one pixel of the target patch based on the correlation profile and the measured pixels of at least one of the source patches.
Abstract:
A system and method for CT sinogram extrapolation are provided. The method comprises receiving a CT projection for extrapolation. The method also comprises selecting a target patch comprising at least one pixel of a row to be extrapolated. The method further comprises generating a correlation profile between the target patch and one or more source patches, wherein the source patches comprise measured pixels in the CT projection in one or more rows adjacent to the target patch. The projection data is generated for at least one pixel of the target patch based on the correlation profile and the measured pixels of at least one of the source patches.