Abstract:
A conductor assembly for a power network includes an inner conductor, an insulating layer arranged concentrically around the inner conductor, and a sensing electrode, arranged radially outward of the insulating layer, and operable as a first electrode of a sensing capacitor of a voltage sensor. The conductor assembly further includes a voltage pickup element having electrically conductive major surfaces, the first major surface being in a surface contact with the sensing electrode. The conductor assembly further includes an electrode wire, in electrical and mechanical contact with the voltage pickup element, for electrically connecting the voltage pickup element with an electric or electronic component disposed remote from the sensing electrode.
Abstract:
Conductor assembly (1) for a power network, which comprises—an inner conductor (5) defining radial and axial directions,—an insulating layer (10) arranged around at least an axial section of the inner conductor, and—a sensing electrode (40), arranged radially outward of the insulating layer, and operable as a first electrode of a sensing capacitor of a capacitive voltage sensor, in which sensing capacitor the inner conductor is operable as a second electrode. The conductor assembly further comprises an electrically insulating spacer element (25), arranged radially between the insulating layer and the sensing electrode.
Abstract:
Cable connection device (2) for connecting a power cable to an electrical installation of a power network, comprising a conductor element (11) having a first end portion (21), a second end portion (31), and a middle portion (41) disposed between the first and the second end portion. The conductor element comprises a connector socket (50), arranged at the first end portion, for mating with a cable plug. The connector socket is integrally formed with the middle portion.
Abstract:
Voltage sensor (1) comprising a voltage divider (40) for sensing an AC voltage of a HV/MV power conductor (10). For adjusting the common overall impedance of the low-voltage portion of the voltage divider towards a desired impedance, the low-voltage portion (60) comprises one or more low-voltage impedance elements (110), a plurality of adjustment impedance elements (80) and a plurality of switches. In its connect state, each switch electrically connects an adjustment impedance element in parallel to at least one of the one or more low-voltage impedance elements (110). The overall impedance of the high-voltage portion (50) and the overall impedance of the low-voltage portion (60) of the voltage divider (40) are adapted such that, by bringing one or more of the switches (90) into their connect state, the voltage divider (40) has, for an AC voltage of between 5 and 25 kV phase-to-ground and a frequency of between 40 and 70 Hertz, a dividing ratio of 3077, of 6154, of 6769 or of 10 000.
Abstract:
The invention relates to a sensor (3) for measuring a voltage in a HV/MV power network in a separable connector (2), the sensor comprising: —an adapter element (11) comprising a high voltage connection adapted to be mechanically and electrically coupled to a high voltage conductor (7) of the separable connector (2) and to receive HV/MV voltage from the separable connector, —a sensor body (12) adapted to be mechanically and electrically coupled to the adapter element (11) and comprising a divider assembly (24) with a plurality of discrete impedance elements, which are electrically connected in series such as to be operable as a voltage divider for sensing a voltage and a low voltage connection (42) configured to provide a low voltage signal corresponding to a high voltage signal present in the HV/MV power network, wherein the adapter element (11) and the sensor body (12) are separate elements that are adapted to be installed to the separable connector (2), wherein the adapter element is configured to be installed between the separable connector and the sensor body.
Abstract:
Impedance assembly (2) for use in a voltage divider for sensing an AC voltage of at least 1 kV versus ground of a power-carrying conductor distributing electrical energy in a grid. The impedance assembly comprises a) a printed circuit board (131) comprising one or more dielectric board layers (210, 215, 220), b) an externally accessible high-voltage contact (100), c) an externally accessible low-voltage contact (110), spaced from the high-voltage contact by at least 30 mm, and d) at least two dividing capacitors (91), connected in series between the high-voltage contact and the low-voltage contact and operable as a high-voltage side of the voltage divider. Each dividing capacitor has two electrodes formed by conductive areas (301, 302, 303, 304, 305, 306), arranged on opposed surface portions of a specific dielectric board layer, and a dielectric comprising a portion of the specific dielectric board layer on which the electrodes are arranged. Instead of the dividing capacitors, the impedance assembly may comprise a resistor layer.
Abstract:
Elastic sleeve (1) for electrically insulating a HV/MV power conductor in a power network, comprising a) a shrinkable or expandable elastic sleeve body (10); b) a receiving space (20) in the sleeve body, for receiving the power conductor; c) a cavity (30) formed in the sleeve body; and d) a divider assembly (40), arranged, at least partially, in the cavity and comprising a plurality of discrete impedance elements, operable as a voltage divider for sensing a voltage of an inner conductor of the power conductor.
Abstract:
A conductor assembly for a power network includes an inner conductor defining radial and axial directions, an insulating layer arranged around at least an axial section of the inner conductor, and a sensing electrode arranged radially outward of the insulating layer. The sensing electrode is operable as a first electrode of a sensing capacitor of a capacitive voltage sensor, in which sensing capacitor the inner conductor is operable as a second electrode. The conductor assembly further includes an electrically insulating spacer element arranged radially between the insulating layer and the sensing electrode.
Abstract:
The present invention provides a non-return valve for a resin injection system, especially for use in electrical cable joints, comprising: a valve housing which includes an outlet for a fluid flowing through the valve; and a valve body which is held by the valve housing and is freely movable between a closed position, in which the outlet is substantially sealed or closed to fluid flow by the valve body, and an open position, in which the outlet is substantially open to fluid flow. Thus, with the present invention, the valve body can be loosely held by the valve housing and the valve need not include any spring means to bias the valve body to the closed position. The invention also provides a resin injection system for sealing a localized breach in an object, such as an electrical cable joint.
Abstract:
Conductor assembly (1) for a power network, comprising an inner conductor (5), an insulating layer (10) arranged concentrically around the inner conductor (5), and a sensing electrode (40), arranged radially outward of the insulating layer (10), and operable as a first electrode of a sensing capacitor of a voltage sensor. The conductor assembly (1) further comprises a voltage pickup element (70), comprising electrically conductive major surfaces (71, 72), the first major surface (71) being in a surface contact with the sensing electrode (40, 40). The conductor assembly further comprises an electrode wire (80), in electrical and mechanical contact with the voltage pickup element (70), for electrically connecting the voltage pickup element (70) with an electric or electronic component disposed remote from the sensing electrode (40).