Abstract:
Disclosed is a method of generating and modifying a virtual model of a set of teeth, where the method provides that a restoration can be inserted into a physical model of the set of teeth manufactured from the virtual model of the set of teeth. A method of and a system for generating a virtual model of a set of teeth for manufacturing a physical model of the set of teeth, and to a physical model of a set of teeth.
Abstract:
A method for manufacturing/producing a dental restoration for a patient, where the method includes: obtaining a 3D scan of at least a restoration site of the patient's mouth, where the manufactured dental restoration is adapted for fitting to the restoration site; obtaining a computer-aided design (CAD design) of the dental restoration; milling the restoration from a material, where the restoration is milled both on an inside surface configured for fitting to the shape of the restoration site of the patient's mouth and on an outside surface, where the milling is according to the obtained CAD design; transferring the milled restoration to a retention means providing a fixed known position of the restoration relative to a post-processing machinery, where the restoration is retained on the inside surface, such that the outside surface of the restoration is approachable/free/accessible; and performing post-processing of the outside surface of the restoration.
Abstract:
A computer product for generating a digital 3D model for use in a dental component based on a digital 3D model of the dental component showing a shape of the teeth and a digital 3D representation of a pre-prepared set of teeth showing the region for which the dental component is intended, said product causing a system to generate a digital 3D combined model representing a target dental situation when the dental component is arranged at the teeth, where the instructions are configured for digitally replacing one or more teeth of the digital 3D representation of the pre-prepared set of teeth with the digital 3D model of the dental component by digitally removing the one or more teeth of the digital 3D representation of the pre-prepared set of teeth and adding the digital 3D model of the dental component to the digital 3D representation of the pre-prepared set of teeth.
Abstract:
A method, a system and a user interface for creating a digital restoration design for the manufacture of a dental restoration for one or more of a patient's teeth where minimal manual interaction is required when setting the restoration margin line includes obtaining a digital 3D representation of the patient's unprepared teeth; obtaining a set of one or more digital teeth anatomies; arranging the digital teeth anatomies and the digital 3D representation according to a preferred relative arrangement and creating a digital restoration design including a restoration margin line, where the restoration margin line is derived at least partly from an intersection of the digital 3D representation and the digital teeth anatomies.
Abstract:
Disclosed is a method for digitally designing a dental restoration, wherein a 3D representation of at least a part of the upper or lower jaw is obtained. The 3D representation represents at least a target site for placing the final restoration and at least one antagonist tooth opposing the target site. Furthermore a digital anatomy design of the restoration is provided. The digital anatomy is based at least on a dynamic occlusion and a relative offset of the planned restoration position. Accordingly, a restoration may be designed that does not interrupt the natural occlusion.
Abstract:
A physical model of a set of teeth, wherein the physical model includes a gingival part in which a cavity comprising a cavity wall is formed; and a removable component having a part shaped as a tooth, where the removable component is configured for fitting into the cavity with a gap at an interface between the removable component and the cavity wall. The removable component or the cavity wall includes one or more supporting elements extending across the gap to establish contact between the removable component and the cavity wall to support and position the removable component in the cavity, and where contact between the removable component and the cavity wall at the interface only is provided by the supporting elements.
Abstract:
Disclosed is a method, an occlusion setup fixture and system for recording digital 3D representations of physical teeth models of a patient's jaws and for arranging the digital 3D representations according in a common coordinate system such that the digital 3D representations are arranged according to the patient's occlusion. The recorded digital 3D representations are virtually brought into occlusion by a virtual movement, where the virtual movement includes a translation along a path according to the confined relative movement of the occlusion setup fixture.