Abstract:
Target region filling techniques are described. Techniques are described in which stereo consistency is promoted between target regions, such as by sharing information during computation. Techniques are also described in which target regions of respective disparity maps are completed to promote consistency between the disparity maps. This estimated disparity may then be used as a guide to completion of a missing texture in the target region. Techniques are further described in which cross-image searching and matching is employed by leveraging a plurality of images. This may including giving preference to matches with cross-image consistency to promote consistency, thereby enforcing stereo consistency between stereo images when applicable.
Abstract:
Stereo correspondence smoothness tool techniques are described. In one or more implementations, an indication is received of a user-defined region in at least one of a plurality of stereoscopic images of an image scene. Stereo correspondence is calculated of image data of the plurality of stereoscopic images of the image scene, the calculation performed based at least in part on the user-defined region as indicating a smoothness in disparities to be calculated for pixels in the user-defined region.
Abstract:
In embodiments of optical flow accounting for image haze, digital images may include objects that are at least partially obscured by a haze that is visible in the digital images, and an estimate of light that is contributed by the haze in the digital images can be determined. The haze can be cleared from the digital images based on the estimate of the light that is contributed by the haze, and clearer digital images can be generated. An optical flow between the clearer digital images can then be computed, and the clearer digital images refined based on the optical flow to further clear the haze from the images in an iterative process to improve visibility of the objects in the digital images.
Abstract:
In embodiments of optical flow accounting for image haze, digital images may include objects that are at least partially obscured by a haze that is visible in the digital images, and an estimate of light that is contributed by the haze in the digital images can be determined The haze can be cleared from the digital images based on the estimate of the light that is contributed by the haze, and clearer digital images can be generated. An optical flow between the clearer digital images can then be computed, and the clearer digital images refined based on the optical flow to further clear the haze from the images in an iterative process to improve visibility of the objects in the digital images.
Abstract:
Stereo correspondence smoothness tool techniques are described. In one or more implementations, an indication is received of a user-defined region in at least one of a plurality of stereoscopic images of an image scene. Stereo correspondence is calculated of image data of the plurality of stereoscopic images of the image scene, the calculation performed based at least in part on the user-defined region as indicating a smoothness in disparities to be calculated for pixels in the user-defined region.
Abstract:
Stereo correspondence model fitting techniques are described. In one or more implementations, a model may be fit to a region in at least one of a plurality of stereoscopic images of an image scene. The model may then be used as part of a stereo correspondence calculation, which may include computing disparities for the region based at least in part on correspondence to the model.
Abstract:
In techniques for video denoising using optical flow, image frames of video content include noise that corrupts the video content. A reference frame is selected, and matching patches to an image patch in the reference frame are determined from within the reference frame. A noise estimate is computed for previous and subsequent image frames relative to the reference frame. The noise estimate for an image frame is computed based on optical flow, and is usable to determine a contribution of similar motion patches to denoise the image patch in the reference frame. The similar motion patches from the previous and subsequent image frames that correspond to the image patch in the reference frame are determined based on the optical flow computations. The image patch is denoised based on an average of the matching patches from reference frame and the similar motion patches determined from the previous and subsequent image frames.
Abstract:
Image search techniques and systems involving emotions are described. In one or more implementations, a digital medium environment of a content sharing service is described for image search result configuration and control based on a search request that indicates an emotion. The search request is received that includes one or more keywords and specifies an emotion. Images are located that are available for licensing by matching one or more tags associated with the image with the one or more keywords and as corresponding to the emotion. The emotion of the images is identified using one or more models that are trained using machine learning based at least in part on training images having tagged emotions. Output is controlled of a search result having one or more representations of the images that are selectable to license respective images from the content sharing service.
Abstract:
Content creation and sharing integration techniques and systems are described. In one or more implementations, techniques are described in which modifiable versions of content (e.g., images) are created and shared via a content sharing service such that image creation functionality used to create the images is preserved to permit continued creation using this functionality. In one or more additional implementations, image creation functionality employed by a creative professional to create content is leveraged to locate similar images from a content sharing service.
Abstract:
In techniques for video denoising using optical flow, image frames of video content include noise that corrupts the video content. A reference frame is selected, and matching patches to an image patch in the reference frame are determined from within the reference frame. A noise estimate is computed for previous and subsequent image frames relative to the reference frame. The noise estimate for an image frame is computed based on optical flow, and is usable to determine a contribution of similar motion patches to denoise the image patch in the reference frame. The similar motion patches from the previous and subsequent image frames that correspond to the image patch in the reference frame are determined based on the optical flow computations. The image patch is denoised based on an average of the matching patches from reference frame and the similar motion patches determined from the previous and subsequent image frames.