CALIBRATION PROCESS FOR FEMTOSECOND LASER INTRAOCULAR LENS MODIFICATION SYSTEM USING VIDEO AND OCT TARGETING

    公开(公告)号:US20220015949A1

    公开(公告)日:2022-01-20

    申请号:US17057691

    申请日:2020-04-08

    Abstract: The XYZ beam position of an ophthalmic laser system is calibrated by measuring a fluorescent signal induced by the focused laser beam in a thin glass coverslip via multiphoton absorption. A video camera measures the XY position and intensity of the fluorescent signal as the focused laser beam strikes the coverslip. The Z position of the focus is determined by scanning the targeted z position and identifying the Z scanner position of peak fluorescence. An OCT system measures the real space Z location of the coverslip, which is correlated with the Z scanner position. Other laser system parameters are assessed by repeatedly scanning a lower energy laser beam in a piece of IOL material, and observing damage (scattering voids) formation in the IOL material. Based on the rate of damage formation, laser system parameters such as beam quality, numerical aperture, pulse energy, and pulse duration, etc. can be assessed.

    Sub-nanosecond laser cataract surgery system

    公开(公告)号:US11020274B2

    公开(公告)日:2021-06-01

    申请号:US16359907

    申请日:2019-03-20

    Inventor: Alexander Vankov

    Abstract: Systems and methods for fragmenting a lens by a laser cataract surgery system includes a sub-nanosecond laser source generating a treatment beam that includes a plurality of laser beam pulses. An optical delivery system is coupled to the sub-nanosecond laser source to receive and direct the treatment beam. A processor is coupled to the sub-nanosecond laser source and the optical delivery system. The processor includes a tangible non-volatile computer readable medium comprising instructions to determine a lens cut pattern for lens fragmentation and determine a plurality of energies of the treatment beam as a linear function of a depth of the lens cut pattern. The treatment beam is output according to the lens cut pattern and the determined energies.

    FULL DEPTH LASER OPHTHALMIC SURGICAL SYSTEM, METHODS OF CALIBRATING THE SURGICAL SYSTEM AND TREATMENT METHODS USING THE SAME

    公开(公告)号:US20200261269A1

    公开(公告)日:2020-08-20

    申请号:US16868481

    申请日:2020-05-06

    Abstract: A full depth ophthalmic surgical system includes a femtosecond laser source and an optical coherence tomographer. The system is capable of performing surgical procedures along the entire length of the eye from the cornea to the retina. The optical system of the ophthalmic surgical system is optimized to focus the laser beam and imaging light in the vitreous humor of the eye. In some embodiments, the illumination light source and the scanning mirrors are imaged by the system's objective lens and the patient interface lens to locations near the pupil, to increase the volume of the vitreous humor reachable by the illumination light and laser beam. For procedures performed posterior to the lens, a method for calibrating the full depth ophthalmic surgical system is also provided. The system can be used to perform treatment in the vitreous humor, including treating floaters and liquification of the vitreous humor.

Patent Agency Ranking