-
公开(公告)号:US11833031B2
公开(公告)日:2023-12-05
申请号:US17057687
申请日:2020-04-09
Applicant: AMO Development, LLC
Inventor: Georg Schuele , David A. Dewey , Jenny Wang , Richard Hofer , Alexander Vankov
CPC classification number: A61F2/1656 , A61F9/008 , B29D11/023 , A61F2009/00897 , A61F2240/001
Abstract: A laser scanning method for forming a Fresnel type gradient index lens in an intraocular lens IOL. The radial profile of the desired optical pathlength (OPL) difference to be achieved in the IOL has multiple zones, each zone ramping from unchanged OPL to one wave, and stepping down to zero. To form a zone of a predefined OPL difference profile, the laser beam is scanned in multiple passes; in each pass, the laser beam is scanned in concentric circles of varying radii covering all or a part of the zone, with laser energy ramping up (along the radius) to a maximum allowed energy and staying at that energy. The ramp up region, which is dependent on the predefined OPL difference profile and the maximum allowed energy, is short, and most part of the pass is scanned at the maximum allowed energy.
-
公开(公告)号:US20220015948A1
公开(公告)日:2022-01-20
申请号:US17057689
申请日:2020-04-07
Applicant: AMO Development, LLC
Inventor: Richard Hofer , Alexander Vankov , Jenny Wang , David A. Dewey , Phillip Gooding , Georg Schuele
Abstract: Methods and related apparatus for real-time process monitoring during laser-based refractive index modification of an intraocular lens. During in situ laser treatment of the IOL to modify the refractive index of the IOL material, a signal from the IOL is measured to determine the processing effect of the refractive index modification, and based on the determination, to adjust the laser system parameters to achieve intended processing result. The signal measured from the IOL may be a fluorescent signal induced by the treatment laser, a fluorescent signal induced by an external illumination source, a temporary photodarkening effect, a color change, or a refractive index change directly measured by phase stabilized OCT.
-
公开(公告)号:US20250009558A1
公开(公告)日:2025-01-09
申请号:US18772786
申请日:2024-07-15
Applicant: AMO Development, LLC
Inventor: Alexander Vankov , Jenny Wang , David A. Dewey , Phillip Gooding , Richard Hofer , Georg Schuele
Abstract: The XYZ beam position of an ophthalmic laser system is calibrated by measuring a fluorescent signal induced by the focused laser beam in a thin glass coverslip via multiphoton absorption. A video camera measures the XY position and intensity of the fluorescent signal as the focused laser beam strikes the coverslip. The Z position of the focus is determined by scanning the targeted z position and identifying the Z scanner position of peak fluorescence. An OCT system measures the real space Z location of the coverslip, which is correlated with the Z scanner position. Other laser system parameters are assessed by repeatedly scanning a lower energy laser beam in a piece of IOL material, and observing damage (scattering voids) formation in the IOL material. Based on the rate of damage formation, laser system parameters such as beam quality, numerical aperture, pulse energy, and pulse duration, etc. can be assessed.
-
公开(公告)号:US12042434B2
公开(公告)日:2024-07-23
申请号:US17057691
申请日:2020-04-08
Applicant: AMO Development, LLC
Inventor: Alexander Vankov , Jenny Wang , David A. Dewey , Phillip Gooding , Richard Hofer , Georg Schuele
CPC classification number: A61F9/00834 , G02B26/101 , A61F2009/00855 , A61F2009/0087 , A61F2009/00897
Abstract: The XYZ beam position of an ophthalmic laser system is calibrated by measuring a fluorescent signal induced by the focused laser beam in a thin glass coverslip via multiphoton absorption. A video camera measures the XY position and intensity of the fluorescent signal as the focused laser beam strikes the coverslip. The Z position of the focus is determined by scanning the targeted z position and identifying the Z scanner position of peak fluorescence. An OCT system measures the real space Z location of the coverslip, which is correlated with the Z scanner position. Other laser system parameters are assessed by repeatedly scanning a lower energy laser beam in a piece of IOL material, and observing damage (scattering voids) formation in the IOL material. Based on the rate of damage formation, laser system parameters such as beam quality, numerical aperture, pulse energy, and pulse duration, etc. can be assessed.
-
公开(公告)号:US20250025344A1
公开(公告)日:2025-01-23
申请号:US18907307
申请日:2024-10-04
Applicant: AMO Development, LLC
Inventor: Richard Hofer , Alexander Vankov , Jenny Wang , David A. Dewey , Phillip Gooding , Georg Schuele
Abstract: Methods and related apparatus for real-time process monitoring during laser-based refractive index modification of an intraocular lens. During in situ laser treatment of the IOL to modify the refractive index of the IOL material, a signal from the IOL is measured to determine the processing effect of the refractive index modification, and based on the determination, to adjust the laser system parameters to achieve intended processing result. The signal measured from the IOL may be a fluorescent signal induced by the treatment laser, a fluorescent signal induced by an external illumination source, a temporary photodarkening effect, a color change, or a refractive index change directly measured by phase stabilized OCT.
-
公开(公告)号:US20230130142A1
公开(公告)日:2023-04-27
申请号:US18145020
申请日:2022-12-22
Applicant: AMO Development, LLC
Inventor: Richard Hofer , Alexander Vankov , Jenny Wang , David A. Dewey , Phillip Gooding , Georg Schuele
Abstract: Methods and related apparatus for real-time process monitoring during laser-based refractive index modification of an intraocular lens. During in situ laser treatment of the IOL to modify the refractive index of the IOL material, a signal from the IOL is measured to determine the processing effect of the refractive index modification, and based on the determination, to adjust the laser system parameters to achieve intended processing result. The signal measured from the IOL may be a fluorescent signal induced by the treatment laser, a fluorescent signal induced by an external illumination source, a temporary photodarkening effect, a color change, or a refractive index change directly measured by phase stabilized OCT.
-
公开(公告)号:US20220061983A1
公开(公告)日:2022-03-03
申请号:US17057687
申请日:2020-04-09
Applicant: AMO Development, LLC
Inventor: Georg Schuele , David A. Dewey , Jenny Wang , Richard Hofer , Alexander Vankov
Abstract: A laser scanning method for forming a Fresnel type gradient index lens in an intraocular lens IOL. The radial profile of the desired optical pathlength (OPL) difference to be achieved in the IOL has multiple zones, each zone ramping from unchanged OPL to one wave, and stepping down to zero. To form a zone of a predefined OPL difference profile, the laser beam is scanned in multiple passes; in each pass, the laser beam is scanned in concentric circles of varying radii covering all or a part of the zone, with laser energy ramping up (along the radius) to a maximum allowed energy and staying at that energy. The ramp up region, which is dependent on the predefined OPL difference profile and the maximum allowed energy, is short, and most part of the pass is scanned at the maximum allowed energy.
-
公开(公告)号:US12109151B2
公开(公告)日:2024-10-08
申请号:US18145020
申请日:2022-12-22
Applicant: AMO Development, LLC
Inventor: Richard Hofer , Alexander Vankov , Jenny Wang , David A. Dewey , Phillip Gooding , Georg Schuele
CPC classification number: A61F9/00827 , A61F9/00834 , A61L27/16 , A61B2017/00061 , A61B2017/00154 , A61F2009/00844 , A61F2009/00851 , A61F2009/00897 , A61L2430/16
Abstract: Methods and related apparatus for real-time process monitoring during laser-based refractive index modification of an intraocular lens. During in situ laser treatment of the IOL to modify the refractive index of the IOL material, a signal from the IOL is measured to determine the processing effect of the refractive index modification, and based on the determination, to adjust the laser system parameters to achieve intended processing result. The signal measured from the IOL may be a fluorescent signal induced by the treatment laser, a fluorescent signal induced by an external illumination source, a temporary photodarkening effect, a color change, or a refractive index change directly measured by phase stabilized OCT.
-
公开(公告)号:US11540946B2
公开(公告)日:2023-01-03
申请号:US17057689
申请日:2020-04-07
Applicant: AMO Development, LLC
Inventor: Richard Hofer , Alexander Vankov , Jenny Wang , David A. Dewey , Phillip Gooding , Georg Schuele
Abstract: Methods and related apparatus for real-time process monitoring during laser-based refractive index modification of an intraocular lens. During in situ laser treatment of the IOL to modify the refractive index of the IOL material, a signal from the IOL is measured to determine the processing effect of the refractive index modification, and based on the determination, to adjust the laser system parameters to achieve intended processing result. The signal measured from the IOL may be a fluorescent signal induced by the treatment laser, a fluorescent signal induced by an external illumination source, a temporary photodarkening effect, a color change, or a refractive index change directly measured by phase stabilized OCT.
-
10.
公开(公告)号:US20220015949A1
公开(公告)日:2022-01-20
申请号:US17057691
申请日:2020-04-08
Applicant: AMO Development, LLC
Inventor: Alexander Vankov , Jenny Wang , David A. Dewey , Phillip Gooding , Richard Hofer , Georg Schuele
Abstract: The XYZ beam position of an ophthalmic laser system is calibrated by measuring a fluorescent signal induced by the focused laser beam in a thin glass coverslip via multiphoton absorption. A video camera measures the XY position and intensity of the fluorescent signal as the focused laser beam strikes the coverslip. The Z position of the focus is determined by scanning the targeted z position and identifying the Z scanner position of peak fluorescence. An OCT system measures the real space Z location of the coverslip, which is correlated with the Z scanner position. Other laser system parameters are assessed by repeatedly scanning a lower energy laser beam in a piece of IOL material, and observing damage (scattering voids) formation in the IOL material. Based on the rate of damage formation, laser system parameters such as beam quality, numerical aperture, pulse energy, and pulse duration, etc. can be assessed.
-
-
-
-
-
-
-
-
-