Abstract:
Various embodiments of low profile male connectors are described. In one embodiment, a connector includes a plug housing having a depth and an interior cavity designed to accommodate pins that extend within the interior cavity in a direction of the depth. The plug housing may be designed to be fully insertable into a receptacle connector of an electronic device, and to have a rear surface that conforms with a shape of an exterior surface of the electronic device. The pins arranged in the plug housing may include various features, such as connecting portions protruding from the plug housing at an angle of approximately 90 degrees for coupling to a cable, bases including cutouts for extending a length of an elongated shaft of the pin, barbs for engaging the plug housing, and limit stops for distributing a force applied to the elongated shaft upon engagement with a receiving pin.
Abstract:
Power adapters and other electronic devices that are durable and can provide a large amount of power while having a small form factor. An example can provide a durable power adapter by providing a connector receptacle having a reinforced tongue. The tongue of the connector receptacle can be reinforced by having a center plate with one or more vertical portions that can be at least approximately at a right angle to a lateral portion of the center plate. This and other examples can provide a large amount of power while having a small form factor by providing a space efficient transformer having thermal dissipation components. This and other examples can provide a small form-factor by including a series of chokes formed as a module and including a variety of types of wires.
Abstract:
A power adapter for powering portable electronic devices is disclosed. The modifications and enhancements to the power adapter can reduce or eliminate the need for adhesives, flexible circuitry, and/or wiring. The power adapter includes multiple guide rails used to guide a circuit board (carrying components) to electrical springs. The electrical springs provide not only an electrical coupling, but also a mechanical coupling. As a result, wiring and/or adhesives is not required. Additionally, a cap is secured to the enclosure through melting part of the cap by, for example, ultrasonic welding without causing damage to the circuit board, as welding location(s) is/are in locations away from the electrical springs and other sensitive components. The power adapter further includes a connector connected to the circuit board. During assembly, the circuit board can pivot in three dimensions during assembly to align the connector with the cap.
Abstract:
Methods, systems, and apparatus for selectively communicating data and audio over a limited-size audio plug. A host device determines whether an audio accessory or a data communicating accessory is plugged therein via a signal, or lack thereof, communicated to the host device via the audio plug of the accessory. The host device then either communicates audio or data over the audio plug contacts that are typically used only for audio communication based on whether its connected to an audio accessory or data communicating accessory. An audio plug may also include a split-ring contact where multiple, independent contacts are formed in place of a single tip, ring, or sleeve contact. The split-ring contact may be used for communicating audio and/or data.
Abstract:
An electrical power adapter has first and second prongs that are retractable and deployable. When the prongs are in the deployed position the adapter may be mated with a receptacle and when in the retracted position the adapter has a reduced physical size. A linkage couples the first prong to the second prongs such that the first and second prongs retract and deploy simultaneously. An actuation mechanism causes the prongs to have a first detent in the deployed position and a second detent in the retracted position.
Abstract:
A power adapter including a wing deployment mechanism for retaining a wing in a first undeployed position and the second deployed position. One example may provide a housing, a spring, a spring cover, and the wing. In one example, the wing may be pivotally attached to the housing and the spring and the spring cover may be fixedly attached to the housing. The spring may contact a portion of the wing and may, in one example, apply a position dependent force to the wing that biases the wing towards either the first or the second position.
Abstract:
An electronic device may have a housing in which electronic components are mounted. The electronic components may be mounted to a substrate such as a printed circuit board. A heat sink structure may dissipate heat generated by the electronic components. The housing may have a housing wall that is separated from the heat sink structure by an air gap. The housing wall may have integral support structures. Each of the support structures may have an inwardly protruding portion that protrudes through a corresponding opening in the heat sink structure. The protruding portions may each have a longitudinal axis and a cylindrical cavity that lies along the longitudinal axis. Each of the support structures may have fins that extend radially outward from the longitudinal axis.
Abstract:
Various embodiments of low profile male connectors are described. In one embodiment, a connector includes a plug housing having a depth and an interior cavity designed to accommodate pins that extend within the interior cavity in a direction of the depth. The plug housing may be designed to be fully insertable into a receptacle connector of an electronic device, and to have a rear surface that conforms with a shape of an exterior surface of the electronic device. The pins arranged in the plug housing may include various features, such as connecting portions protruding from the plug housing at an angle of approximately 90 degrees for coupling to a cable, bases including cutouts for extending a length of an elongated shaft of the pin, barbs for engaging the plug housing, and limit stops for distributing a force applied to the elongated shaft upon engagement with a receiving pin.
Abstract:
Various embodiments of low profile male connectors are described. In one embodiment, a connector includes a plug housing having a depth and an interior cavity designed to accommodate pins that extend within the interior cavity in a direction of the depth. The plug housing may be designed to be fully insertable into a receptacle connector of an electronic device, and to have a rear surface that conforms with a shape of an exterior surface of the electronic device. The pins arranged in the plug housing may include various features, such as connecting portions protruding from the plug housing at an angle of approximately 90 degrees for coupling to a cable, bases including cutouts for extending a length of an elongated shaft of the pin, barbs for engaging the plug housing, and limit stops for distributing a force applied to the elongated shaft upon engagement with a receiving pin.
Abstract:
A power adapter is disclosed. The power adapter includes housing parts that carries electronic components. To secure the housing parts together, one housing part includes snaps and another housing part includes protrusions and rails. During assembly, the protrusions slide under the snap, causing the snap to deflect in one direction, while the rails slide over the snap, which keeps the snap partially flat but also causes the snap to deflect in another direction. The engagement (during assembly) of the rails and the protrusions to opposing surfaces of the snap cause bi-directional deflection/bending of the snap. When each protrusion is positioned into an opening of the snap, the snap returns to a flat, non-deflected state, and the housing parts are secured together by the snap, protrusions, and rails. The rails support the snaps by limiting or preventing additional deflection of the snap, which subsequently promotes the housing remaining together.