Abstract:
An aesthetically pleasing small form factor desktop computer is described. The small form factor desktop computer can be formed of a single piece seamless housing that in the described embodiment is machined from a single billet of aluminum. The single piece seamless housing includes an aesthetically pleasing foot support having at least a portion formed of RF transparent material that provides easy user access to selected internal components as well as offers electromagnetic (EM) shielding. This simplicity of design can accrue many advantages to the small form factor desktop computer besides those related to aesthetic look and feel. Fewer components and less time and effort can be required for assembly of the small form factor desktop computer and the absence of seams in the single piece housing can provide good protection against environmental contamination of internal components as well as EM shielding.
Abstract:
This application relates generally to a multipurpose fastener for an electronic device. More specifically, the multipurpose fastener is configured to both mechanically restrain at least one circuit board within a housing of an electronic device and to electrically couple at least one circuit board to the housing. In some embodiments, the fastener is configured to constrain two printed circuit boards such that they are disposed substantially parallel to one another. A conductive sleeve can be utilized to establish a predefined distance between the two circuit boards and to provide a conduit through which power can be transferred.
Abstract:
Systems and methods of providing a tooling system for forming a unitary housing are disclosed herein. One embodiment may utilize a plurality of injection cavity slides. The slides may form the interior cavity of the housing. Utilizing a plurality of injection cavity slides to form a single cavity insert may allow the slides to be remove from an opening in the housing which is smaller than the cavity of the housing. Removing the slides from housing allows for the formation of housing having a unitary structure.
Abstract:
An electronic device may have a housing in which electronic components are mounted. The electronic components may be mounted to a substrate such as a printed circuit board. A heat sink structure may dissipate heat generated by the electronic components. The housing may have a housing wall that is separated from the heat sink structure by an air gap. The housing wall may have integral support structures. Each of the support structures may have an inwardly protruding portion that protrudes through a corresponding opening in the heat sink structure. The protruding portions may each have a longitudinal axis and a cylindrical cavity that lies along the longitudinal axis. Each of the support structures may have fins that extend radially outward from the longitudinal axis.
Abstract:
Systems and methods of providing a tooling system for forming a unitary housing are disclosed herein. One embodiment may utilize a plurality of injection cavity slides. The slides may form the interior cavity of the housing. Utilizing a plurality of injection cavity slides to form a single cavity insert may allow the slides to be remove from an opening in the housing which is smaller than the cavity of the housing. Removing the slides from housing allows for the formation of housing having a unitary structure.
Abstract:
An aesthetically pleasing small form factor desktop computer is described. The small form factor desktop computer can be formed of a single piece seamless housing that in the described embodiment is machined from a single billet of aluminum. The single piece seamless housing includes an aesthetically pleasing foot support having at least a portion formed of RF transparent material that provides easy user access to selected internal components as well as offers electromagnetic (EM) shielding. This simplicity of design can accrue many advantages to the small form factor desktop computer besides those related to aesthetic look and feel. Fewer components and less time and effort can be required for assembly of the small form factor desktop computer and the absence of seams in the single piece housing can provide good protection against environmental contamination of internal components as well as EM shielding.
Abstract:
Quick release couplings for releasably coupling components to the computer are disclosed. The quick release coupling mechanisms are generally configured to allow tool-less placement of the components relative to the computer. That is, the quick release coupling mechanisms are configured to perform their couplings without using conventional fasteners such as screws, bolts, etc. By eliminating use of fasteners, the components may be inserted and removed from the computer without using tools (e.g., tool-less). Furthermore, the quick release couplings are easy to maneuver thereby enabling quick and straightforward assembly and disassembly of the components to and from the computer (e.g., quick release). For example, the components may be inserted and removed by a simple pushing or pulling motion, and/or by a simple flick of a latch or handle.
Abstract:
An electronic device may have a housing in which electronic components are mounted. The electronic components may be mounted to a substrate such as a printed circuit board. A heat sink structure may dissipate heat generated by the electronic components. The housing may have a housing wall that is separated from the heat sink structure by an air gap. The housing wall may have integral support structures. Each of the support structures may have an inwardly protruding portion that protrudes through a corresponding opening in the heat sink structure. The protruding portions may each have a longitudinal axis and a cylindrical cavity that lies along the longitudinal axis. Each of the support structures may have fins that extend radially outward from the longitudinal axis.
Abstract:
An aesthetically pleasing small form factor desktop computer is described. The small form factor desktop computer can be formed of a single piece seamless housing that in the described embodiment is machined from a single billet of aluminum. The single piece seamless housing includes an aesthetically pleasing foot support having at least a portion formed of RF transparent material that provides easy user access to selected internal components as well as offers electromagnetic (EM) shielding. This simplicity of design can accrue many advantages to the small form factor desktop computer besides those related to aesthetic look and feel. Fewer components and less time and effort can be required for assembly of the small form factor desktop computer and the absence of seams in the single piece housing can provide good protection against environmental contamination of internal components as well as EM shielding.