Scene Stability Detection
    11.
    发明申请
    Scene Stability Detection 有权
    场景稳定性检测

    公开(公告)号:US20150350547A1

    公开(公告)日:2015-12-03

    申请号:US14502128

    申请日:2014-09-30

    Applicant: Apple Inc.

    Abstract: Techniques to detect subject and camera motion in a set of consecutively captured image frames are disclosed. More particularly, techniques disclosed herein temporally track two sets of downscaled images to detect motion. One set may contain higher resolution and the other set lower resolution of the same images. For each set, a coefficient of variation may be computed across the set of images for each sample in the downscaled image to detect motion and generate a change mask. The information in the change mask can be used for various applications, including determining how to capture a next image in the sequence.

    Abstract translation: 公开了在一组连续拍摄的图像帧中检测主体和相机运动的技术。 更具体地,本文公开的技术暂时跟踪两组缩小图像以检测运动。 一组可能包含较高的分辨率,另一组则设置相同图像的较低分辨率。 对于每个集合,可以在缩小图像中的每个样本的图像集上计算变化系数,以检测运动并生成改变掩模。 更改掩码中的信息可用于各种应用,包括确定如何捕获序列中的下一个图像。

    Three Dimensional User Interface Effects On A Display
    12.
    发明申请
    Three Dimensional User Interface Effects On A Display 有权
    三维用户界面对显示器的影响

    公开(公告)号:US20150009130A1

    公开(公告)日:2015-01-08

    申请号:US14329777

    申请日:2014-07-11

    Applicant: Apple Inc.

    Abstract: The techniques disclosed herein may use various sensors to infer a frame of reference for a hand-held device. In fact, with various inertial clues from accelerometer, gyrometer, and other instruments that report their states in real time, it is possible to track a Frenet frame of the device in real time to provide an instantaneous (or continuous) 3D frame-of-reference. In addition to—or in place of—calculating this instantaneous (or continuous) frame of reference, the position of a user's head may either be inferred or calculated directly by using one or more of a device's optical sensors, e.g., an optical camera, infrared camera, laser, etc. With knowledge of the 3D frame-of-reference for the display and/or knowledge of the position of the user's head, more realistic virtual 3D depictions of the graphical objects on the device's display may be created—and interacted with—by the user.

    Abstract translation: 本文公开的技术可以使用各种传感器来推断用于手持设备的参考帧。 事实上,由于来自加速度计,陀螺仪和其他实时报告其状态的仪器的各种惯性线索,可以实时跟踪设备的Frenet帧,以提供瞬时(或连续)3D帧 - 参考。 除了或代替计算这个瞬时(或连续的)参照系,用户头部的位置可以通过使用设备的一个或多个光学传感器(例如,光学摄像机)来直接推断或计算, 红外摄像机,激光器等。通过了解用于显示和/或用户头部位置的知识的3D参考框架,可以创建设备显示器上的图形对象的更逼真的虚拟3D描绘,以及 与用户进行交互。

    GRANULAR GRAPHICAL USER INTERFACE ELEMENT
    13.
    发明申请
    GRANULAR GRAPHICAL USER INTERFACE ELEMENT 审中-公开
    颗粒图形用户界面元素

    公开(公告)号:US20140195978A1

    公开(公告)日:2014-07-10

    申请号:US14152819

    申请日:2014-01-10

    Applicant: APPLE INC.

    CPC classification number: G06F3/04847 G06F3/04812 G06F3/0482 G06F3/04855

    Abstract: A graphical user interface (GUI) element permits a user to control an application in both a coarse manner and a fine manner. When a cursor is moved to coincide or overlap the displayed GUI element, parameter adjustment is made at a first (coarse) granularity so that rapid changes to the target parameter can be made (e.g., displayed zoom level, image rotation or playback volume). As the cursor is moved away from the displayed GUI element, parameter adjustment is made at a second (fine) granularity so that fine changes to the target parameter can be made. In one embodiment, the further the cursor is moved from the displayed GUI element, the finer the control.

    Abstract translation: 图形用户界面(GUI)元素允许用户以粗略的方式和精细的方式来控制应用。 当光标移动以使显示的GUI元素重合或重叠时,以第一(粗)粒度进行参数调整,使得可以进行对目标参数的快速改变(例如,显示的缩放级别,图像旋转或回放音量)。 当光标从显示的GUI元素移开时,以第二(精细)粒度进行参数调整,从而可以对目标参数进行精细的改变。 在一个实施例中,光标从显示的GUI元素移动得越多,控件越细。

    Optimizing capture of focus stacks
    14.
    发明授权
    Optimizing capture of focus stacks 有权
    优化焦点堆叠的捕获

    公开(公告)号:US09565356B2

    公开(公告)日:2017-02-07

    申请号:US14864565

    申请日:2015-09-24

    Applicant: Apple Inc.

    Abstract: Generating a focus stack, including receiving initial focus data that identifies a plurality of target depths, positioning a lens at a first position to capture a first image at a first target depth of the plurality of target depths, determining, in response to capturing the first image and prior to capturing additional images, a sharpness metric for the first image, capturing, in response to determining that the sharpness metric for the first image is an unacceptable value, a second image at a second position based on the sharpness metric, wherein the second position is not included in the plurality of target depths, determining that a sharpness metric for the second image is an acceptable value, and generating a focus stack using the second image.

    Abstract translation: 生成焦点堆叠,包括接收识别多个目标深度的初始聚焦数据,将透镜定位在第一位置以在多个目标深度的第一目标深度捕获第一图像,响应于捕获第一 图像,并且在捕获附加图像之前,针对第一图像的锐度度量,响应于确定第一图像的锐度度量是不可接受的值,捕获,基于锐度度量在第二位置处的第二图像,其中 第二位置不包括在多个目标深度中,确定第二图像的锐度度量是可接受的值,并且使用第二图像生成焦点堆叠。

    Time-Lapse Video Capture With Temporal Points Of Interest
    15.
    发明申请
    Time-Lapse Video Capture With Temporal Points Of Interest 有权
    具有时间兴趣点的时间延迟视频捕获

    公开(公告)号:US20160093335A1

    公开(公告)日:2016-03-31

    申请号:US14502675

    申请日:2014-09-30

    Applicant: Apple Inc.

    Inventor: Frank Doepke

    Abstract: Traditionally, time-lapse videos are constructed from images captured at given time intervals called “temporal points of interests” or “temporal POIs.” Disclosed herein are intelligent systems and methods of capturing and selecting better images around temporal points of interest for the construction of improved time-lapse videos. According to some embodiments, a small “burst” of images may be captured, centered around the aforementioned temporal points of interest. Then, each burst sequence of images may be analyzed, e.g., by performing a similarity comparison between each image in the burst sequence and the image selected at the previous temporal point of interest. Selecting the image from a given burst that is most similar to the previous selected image allows the intelligent systems and methods described herein to improve the quality of the resultant time-lapse video by discarding “outlier” or other undesirable images captured in the burst sequence around a particular temporal point of interest.

    Abstract translation: 传统上,延时视频是由被称为“时间兴趣点”或“时间兴趣点”的给定时间间隔拍摄的图像构成的。这里公开了智能系统和方法,用于捕获和选择围绕时间点的更好的图像,用于构建 改进的延时视频。 根据一些实施例,可以围绕上述时间兴趣点捕获小的“突发”的图像。 然后,可以例如通过在突发序列中的每个图像和在先前的时间点选择的图像之间执行相似性比较来分析图像的每个突发序列。 从与先前选择的图像最相似的给定脉冲串中选择图像允许本文所述的智能系统和方法通过丢弃在周期中的突发序列中捕获的“异常值”或其他不期望的图像来提高合成的延时视频的质量 特定的时间点。

    Object-of-interest detection and recognition with split, full-resolution image processing pipeline
    16.
    发明授权
    Object-of-interest detection and recognition with split, full-resolution image processing pipeline 有权
    利用分割,全分辨率图像处理流水线的感兴趣物体检测和识别

    公开(公告)号:US09251431B2

    公开(公告)日:2016-02-02

    申请号:US14292776

    申请日:2014-05-30

    Applicant: Apple Inc.

    Abstract: Differing embodiments of this disclosure may employ one or all of the several techniques described herein to utilize a “split” image processing pipeline, wherein one part of the “split” image processing pipeline runs an object-of-interest recognition algorithm on scaled down (also referred to herein as “low-resolution”) frames received from a camera of a computing device, while the second part of the “split” image processing pipeline concurrently runs an object-of-interest detector in the background on full resolution (also referred to herein as “high-resolution”) image frames received from the camera. If the object-of-interest detector detects an object-of-interest that can be read, it then crops the object-of-interest out of the “high-resolution” camera buffer, optionally performs a perspective correction, and/or scaling on the object-of-interest to make it the desired size needed by the object-of-interest recognition algorithm, and then sends the scaled, high-resolution representation of the object-of-interest to the object-of-interest recognition algorithm for further processing.

    Abstract translation: 本公开的不同实施例可以使用本文所描述的几种技术中的一种或全部来利用“分割”图像处理流水线,其中“分割”图像处理流水线的一部分按缩小的方式运行兴趣对象识别算法( 这里也称为“低分辨率”)帧,而“分割”图像处理流水线的第二部分同时在全分辨率的背景下运行感兴趣的检测器(也称为“低分辨率”) 这里称为“高分辨率”)从相机接收的图像帧。 如果感兴趣的感兴趣的检测器检测到可以读取的感兴趣的物体,那么它然后将感兴趣的物体从“高分辨率”相机缓冲器中进行裁剪,可选地执行透视校正和/或缩放 利益感兴趣的目标,使其成为目标感兴趣识别算法所需的大小,然后将感兴趣的目标的缩放的高分辨率表示发送到感兴趣的对象识别算法 进一步处理。

Patent Agency Ranking