Abstract:
A method and an apparatus for an application thinning mechanism are described. The thinning mechanism can select a subset of components from a universal application to assemble an application variant to be distributed and installed to a specific type of devices. The universal application may include every component, such as asset, resource or executable, built/developed for targeted device attributes to install one common application to multiple devices. For example, the thinning mechanism can use a trait vector associated with a type of devices to iterate through the components and identify assets to be included or packaged into in each target device specific application or application variant.
Abstract:
A method and an apparatus for an application thinning mechanism are described. The thinning mechanism can select a subset of components from a universal application to assemble an application variant to be distributed and installed to a specific type of devices. The universal application may include every component, such as asset, resource or executable, built/developed for targeted device attributes to install one common application to multiple devices. For example, the thinning mechanism can use a trait vector associated with a type of devices to iterate through the components and identify assets to be included or packaged into in each target device specific application or application variant.
Abstract:
A system is described to create and transmit a streamable ZIP file container. The streamable ZIP file container contains stream metadata, files, and a central directory. The stream metadata, files, and central directory can be saved in a contiguous stream without any intervening bytes. When the streamable ZIP file container is read by a client device that supports streamable ZIP file containers, the client device can exit the data stream without receiving the central directory. Interruptions during transmission of the ZIP file container can be resumed.
Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for erasing user data stored in a file system. The method includes destroying all key bags containing encryption keys on a device having a file system encrypted on a per file and per class basis, erasing and rebuilding at least part of the file system associated with user data, and creating a new default key bag containing encryption keys. Also disclosed herein is a method of erasing user data stored in a remote file system encrypted on a per file and per class basis. The method includes transmitting obliteration instructions to a remote device, which cause the remote device to destroy all key bags containing encryption keys on the remote device, erase and rebuild at least part of the file system associated with user data, and create on the remote device a new default key bag containing encryption keys.
Abstract:
The disclosed technology addresses the need in the art for assigning multiple containers to a single application. A container can be a specified area of a file system that an assigned application can access to store data, while other applications are restricted access to the container. In some instances, it may be beneficial for multiple applications to share some data, while still maintaining other data in a secure location, thus an application can be assigned to multiple containers, a personal container that can only be accessed by the application, and a shared container that can be accessed by multiple applications. Further, an application can be assigned an alternate container, in addition to the personal container. The alternate container can be used when an alternate user is using the client device, thus restricting the alternate user from accessing any sensitive data stored in the personal container.
Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for erasing user data stored in a file system. The method includes destroying all key bags containing encryption keys on a device having a file system encrypted on a per file and per class basis, erasing and rebuilding at least part of the file system associated with user data, and creating a new default key bag containing encryption keys. Also disclosed herein is a method of erasing user data stored in a remote file system encrypted on a per file and per class basis. The method includes transmitting obliteration instructions to a remote device, which cause the remote device to destroy all key bags containing encryption keys on the remote device, erase and rebuild at least part of the file system associated with user data, and create on the remote device a new default key bag containing encryption keys.
Abstract:
A method of establishing communications with a first device is disclosed. The method includes: the first device presenting connection information to a second device; receiving a response from a second device; establishing an association with the second device; transmitting, in response to a determination that the first device and the second device are connected for data, first data to the second device, the first data comprising addressing information for a server; receiving second data from the second device, the second data comprising second information for establishing communications with the first device; and configuring the first device to receive third data from a location remote to the first device using the second information from the second data.
Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for erasing user data stored in a file system. The method includes destroying all key bags containing encryption keys on a device having a file system encrypted on a per file and per class basis, erasing and rebuilding at least part of the file system associated with user data, and creating a new default key bag containing encryption keys. Also disclosed herein is a method of erasing user data stored in a remote file system encrypted on a per file and per class basis. The method includes transmitting obliteration instructions to a remote device, which cause the remote device to destroy all key bags containing encryption keys on the remote device, erase and rebuild at least part of the file system associated with user data, and create on the remote device a new default key bag containing encryption keys.
Abstract:
A system is described to create and transmit a streamable ZIP file container. The streamable ZIP file container contains stream metadata, files, and a central directory. The stream metadata, files, and central directory can be saved in a contiguous stream without any intervening bytes. When the streamable ZIP file container is read by a client device that supports streamable ZIP file containers, the client device can exit the data stream without receiving the central directory. Interruptions during transmission of the ZIP file container can be resumed.