Abstract:
Altitude based device management is provided herein. A method can comprise transmitting, by a mobile device comprising a processor, a signaling message to a network device of a wireless network. The signaling message can comprise first data indicating a device type of the mobile device and second data indicating a distance measurement of the mobile device with respect to a reference point. The method can also comprise implementing, by the mobile device, a first instruction related to a power setting and a second instruction related to an operating parameter. The first instruction and the second instruction can be received from the network device and can be based on the device type of the mobile device and the distance measurement of the mobile device.
Abstract:
Example methods and systems are disclosed to facilitate detection and identification of devices connected to a cellular network and that are causing interference to the cellular network. An example method may include receiving, by a serving base station of the device, a first set of information associated with data communications of a device utilizing a cellular network. The method may further include determining the device is an interfering device based on the first set of information associated with the data communication substantially corresponding with an interfering device profile, and in response tracking the device. During the tracking of the device, a second set of information associated with the data communications from the device may be obtained, and an interfering device type of the device may be determined based on the second set of information. An action may be performed on the interfering device based on its interfering device type.
Abstract:
A system may include a first processor for storing, in a key-value column-based database, data records from data sources of a cellular network that is transformed into a single format. Customer identifiers may be used as key-values for indexing the data records in the key-value column-based database. The system may include a second processor for creating session records from the data records. Each session record may include a velocity of an endpoint device associated with a session and a number of inter-cell handoff attempts for the session. Each session record may also be labeled with a session identifier comprising a customer identifier and a timestamp. The system may further include a third processor for creating cell-level records from the session records. Each cell-level record may include a plurality of key performance indicators for a cell site of the cellular network segregated by a plurality of endpoint device types.
Abstract:
Example methods, apparatus, systems, and machine-readable mediums for unmanned aerial vehicle drive testing and mapping of carrier signals are disclosed. An example method may include determining that an unmanned aerial vehicle is travelling on a flight route at an altitude for determination of network performance of a cellular network. The method may further include determining, using an antenna, signal diagnostics of the cellular network during travel of the unmanned aerial vehicle on the flight route. The method may conclude with transmitting the signal diagnostics of the cellular network to a service provider.
Abstract:
A network access credential can be shared among devices based on location information for a device. Location information can include timed fingerprint location information. In an aspect, location information can be associated with a location of user equipment. This location information can be correlated with network access credentials. Location information can be used to access a relevant network access credential. The relevant network access credential can be shared with other devices. In an embodiment, sharing a network access credential can be between mobile devices. In another embodiment, sharing a network access credential can be between a remote computing device and a mobile device. Sharing a credential can allow for access to a network without having to generate or input new credentials.
Abstract:
Concepts and technologies are described herein for managing network load using device application programs. An illustrative method includes receiving, at a mobile device, a list of preferred combinations of location area codes (“LACs”), cell identifiers (“CIDs”), and times that data access by the mobile device is to be incentivized, determining a current LAC associated with a location area within which the mobile device is currently located, determining a current CID associated with a base transceiver station to which the mobile device is currently connected, determining a current time, and determining if the current LAC, the current cell ID, and the current time are included as a preferred combination in the list. The method also includes providing an indication that data access by the mobile device is incentivized if the current LAC, the current cell ID, and the current time are included in the list as a preferred combination.
Abstract:
A network access credential can be shared among devices based on location information for a device. Location information can include timed fingerprint location information. In an aspect, location information can be associated with a location of user equipment. This location information can be correlated with network access credentials. Location information can be used to access a relevant network access credential. The relevant network access credential can be shared with other devices. In an embodiment, sharing a network access credential can be between mobile devices. In another embodiment, sharing a network access credential can be between a remote computing device and a mobile device. Sharing a credential can allow for access to a network without having to generate or input new credentials.
Abstract:
A method, computer-readable storage device and apparatus for quantifying a total number of customers impacted by a cellular tower outage are disclosed. For example, the method monitors a plurality of cellular towers, detects a failure of one of the plurality of cellular towers, identifies a subset of the plurality of cellular towers that are included in an affected region, calculates a number of additional customers served by each one of the subset of the plurality of cellular towers that are included in the affected region due to the failure of the one cellular tower, and quantifies the total number of customers impacted by the failure of the one cellular tower by adding the number of additional customers served by the each one of the subset of the plurality of cellular towers that are included in the affected region.
Abstract:
A network access credential can be shared among devices based on location information for a device. Location information can include timed fingerprint location information. In an aspect, location information can be associated with a location of user equipment. This location information can be correlated with network access credentials. Location information can be used to access a relevant network access credential. The relevant network access credential can be shared with other devices. In an embodiment, sharing a network access credential can be between mobile devices. In another embodiment, sharing a network access credential can be between a remote computing device and a mobile device. Sharing a credential can allow for access to a network without having to generate or input new credentials.
Abstract:
Aspects of the subject disclosure may include, for example, receiving from a database server via a network, a reduced size set of quantile samples of a plurality of variables associated with a dynamic system, wherein the reduced size set of quantile samples is based on a standard set of quantile samples, wherein the standard set of quantile samples comprises M quantile samples based on dividing each distribution of the plurality of variables into 1/M probability steps, and wherein the reduced size set of quantile samples comprises N quantile samples based on dividing each distribution of the plurality of variables into 1/N probability steps, performing a plurality of linear interpolations upon the reduced size set of quantile samples to a restored size set of quantile samples, performing a Monte Carlo simulation using the restored size set of quantile samples to generate a simulation result, and transmitting the simulation result to a client device. Other embodiments are disclosed.