Abstract:
The described technology is generally directed towards user equipment geolocation. Network measurement data associated with user equipment can be separated into static periods in which the user equipment was not moving, and moving periods in which the user equipment was moving. Static location processing can be applied to determine static locations from the static period network measurements, and moving location processing can be applied to determine moving locations from the moving period network measurements. Resulting static location information and moving location information can then be merged in order to improve the accuracy of both the static and the moving location information. The enhanced accuracy location information can be stored and used for any desired application.
Abstract:
A device can receive, from a network node device, call trace event data relating to characteristics of a wireless communication session between the network node device and a user equipment. The device can sequence and combine the call trace event data for a period of the wireless communication session. The device can analyze the call trace event data to determine a category of network communication traffic transmitted via a communication channel between the network node device and the user equipment. In response to a determination that the network communication traffic comprises streaming video packets, the device can facilitate directing of network resources to be allocated to support the wireless communication session.
Abstract:
In one embodiment, a method includes receiving, by one or more interfaces, a location of a physical object and receiving, by the one or more interfaces and from a data platform, an image associated with the physical object and the location of the physical object. The method also includes extracting, by one or more processors and from the image, an attribute associated with a feature of the physical object and classifying, by one or more processors, the attribute, wherein classifying the attribute comprises associating the attribute with a characteristic of the feature of the physical object. The method further includes classifying, by the one or more processors, the physical object and determining, by the one or more processors, to identify the physical object as eligible for modification.
Abstract:
Techniques for locating a mobile device using a time distance of arrival (TDOA) method with disturbance scrutiny are provided. In an aspect, for respective combinations of three base station devices of a number of base station devices greater than or equal to three, intersections in hyperbolic curves, generated using a closed form function with input values based on differences of distances from the device to pairs of base station devices of the respective combinations of three base station devices, are determined. The intersection points are then tested for robustness against measurement errors associated with the input values and a subset of the intersection points that are associated with a degree of resistance to the measurement errors are selected to estimate a location of the device.
Abstract:
Determining levels of geographic redundancy among radios of a wireless radio network is disclosed. The level of geographic redundancy for a radio can affect the determination of location information for a user equipment (UE) on the wireless radio network. The disclosed subject matter can be employed in conjunction with timed fingerprint location (TFL) technologies to facilitate selection of radios employed in determining time values for TFL location determination. Levels of geographic redundancy can be employed to rank or order radios of a wireless radio network so as to reduce the likelihood of using geographically redundant radios in location determination. Further, rules can be selected to adjust threshold values and equations employed in determining the levels of geographic redundancy. Moreover, rules can be selected to apply boundary conditions to reduce the number of determinations formed for a set of radios of the wireless radio network.
Abstract:
Determining levels of geographic redundancy among radios of a wireless radio network is disclosed. The level of geographic redundancy for a radio can affect the determination of location information for a user equipment (UE) on the wireless radio network. The disclosed subject matter can be employed in conjunction with timed fingerprint location (TFL) technologies to facilitate selection of radios employed in determining time values for TFL location determination. Levels of geographic redundancy can be employed to rank or order radios of a wireless radio network so as to reduce the likelihood of using geographically redundant radios in location determination. Further, rules can be selected to adjust threshold values and equations employed in determining the levels of geographic redundancy. Moreover, rules can be selected to apply boundary conditions to reduce the number of determinations formed for a set of radios of the wireless radio network.
Abstract:
Determining levels of geographic redundancy among radios of a wireless radio network is disclosed. The level of geographic redundancy for a radio can affect the determination of location information for a user equipment (UE) on the wireless radio network. The disclosed subject matter can be employed in conjunction with timed fingerprint location (TFL) technologies to facilitate selection of radios employed in determining time values for TFL location determination. Levels of geographic redundancy can be employed to rank or order radios of a wireless radio network so as to reduce the likelihood of using geographically redundant radios in location determination. Further, rules can be selected to adjust threshold values and equations employed in determining the levels of geographic redundancy. Moreover, rules can be selected to apply boundary conditions to reduce the number of determinations formed for a set of radios of the wireless radio network.
Abstract:
Locations and azimuths of cells of a communication network can be estimated, determined, and validated. Cell attribute management component (CAMC) can estimate, determine, and/or validate cell locations based on analysis of timing advance (TA) measurement data and/or location data associated with devices associated with base stations associated with cells. CAMC can estimate azimuth of a cell associated with a base station based on analysis of a validated cell location of the cell and location data associated with devices associated with the cell. CAMC can determine whether a recorded azimuth of the cell is validated based on analysis of the estimated azimuth of the cell and the recorded azimuth of the cell. CAMC can tag the recorded azimuth of the cell as validated if applicable azimuth accuracy criteria is met, inaccurate if applicable azimuth criteria is not met, or omni if the cell is an omni cell.
Abstract:
The described technology is generally directed towards user equipment geolocation. Network measurement data associated with user equipment can be separated into static periods in which the user equipment was not moving, and moving periods in which the user equipment was moving. Static location processing can be applied to determine static locations from the static period network measurements, and moving location processing can be applied to determine moving locations from the moving period network measurements. Resulting static location information and moving location information can then be merged in order to improve the accuracy of both the static and the moving location information. The enhanced accuracy location information can be stored and used for any desired application.
Abstract:
The described technology is generally directed towards user equipment (UE) geolocation using a long history of network information. In some examples, a long history of network information associated with a UE can be processed to identify frequently repeated serving cell and correlated timing advance values. The frequently repeated serving cell and correlated timing advance values are indicative of frequently visited places. Next, the long history can be leveraged to determine locations of the frequently visited places with enhanced accuracy, and the resulting enhanced accuracy locations can be identified in a location lookup table for the UE. When the UE subsequently connects to the frequently repeated serving cell and the correlated timing advance value is observed, the location lookup table can be used to quickly assign an enhanced accuracy location to the UE.