Abstract:
One embodiment of the present invention provides a synthesizer. The synthesizer includes one or more tunable oscillators, a frequency-dividing circuit coupled to the tunable oscillators, and a multiplexer coupled to the frequency-dividing circuit. The frequency-dividing circuit includes a number of frequency dividers, and is configured to generate a number of frequency-dividing outputs. At least one frequency-dividing output has a different frequency division factor. The multiplexer is configured to select a frequency-dividing output
Abstract:
One embodiment of the present invention provides a signal-recording system. During operation, the system receives a plurality of radio frequency (RF) signals, separates the RF signals to obtain a first group of RF signals in a first RF band and a second group of RF signals in a second RF band, and simultaneously down-converts the first group of RF signals to a first group of low intermediate-frequency (low-IF) signals in a first IF band and the second group of RF signals to a second group of low-IF signals in a second IF band. The system further converts the first group of low-IF signals and the second group of low-IF signals to the digital domain, and simultaneously processes all of the converted low-IF signals.
Abstract:
One embodiment of the present invention provides a system for dynamic, on-demand, cross-channel bandwidth provisioning in a wireless communication system. During operation, the system determines, by a scheduler, bandwidth resources that are available in the wireless communication system. The available bandwidth resources comprise a plurality of scattered spectrum pieces. The system defines one or more logical channels that encompass the scattered spectrum pieces, aggregates multiple logical channels in response to determining that spectrum pieces encompassed by a single logical channel do not meet traffic need, and provisions a user or a service using spectrum pieces located within the aggregated multiple logical channels, thereby facilitating on-demand, cross-channel bandwidth provisioning.
Abstract:
One embodiment of the present invention provides a system for controlling operations of a power amplifier in a wireless transmitter. During operation, the system receives a baseband signal to be transmitted, and dynamically switches an operation mode of the power amplifier between a high power back-off mode having a first power back-off factor and a normal mode having a second power back-off factor based on a level of the baseband signal.
Abstract:
One embodiment of the present invention provides a multi-band RF transmitter. The RF transmitter includes an RF integrated circuit (IC) chip that includes a plurality of identical wideband ports for outputting modulated RF signals, a plurality of narrowband power amplifiers (PAs), and a plurality of matching networks. A respective narrowband power amplifier (PA) is coupled to a wideband port of the RF IC chip via a respective matching network.
Abstract:
One embodiment of the present invention provides a signal-recording system. During operation, the system receives a plurality of radio frequency (RF) signals, separates the RF signals to obtain a first group of RF signals in a first RF band and a second group of RF signals in a second RF band, and simultaneously down-converts the first group of RF signals to a first group of low intermediate-frequency (low-IF) signals in a first IF band and the second group of RF signals to a second group of low-IF signals in a second IF band. The system further converts the first group of low-IF signals and the second group of low-IF signals to the digital domain, and simultaneously processes all of the converted low-IF signals.
Abstract:
One embodiment of the present invention provides a system for controlling operations of a power amplifier in a wireless transmitter. During operation, the system receives a baseband signal to be transmitted, and dynamically switches an operation mode of the power amplifier between a high power back-off mode having a first power back-off factor and a normal mode having a second power back-off factor based on a level of the baseband signal.
Abstract:
One embodiment of the present invention provides a system for performing DC offset cancellation for a wireless receiver that includes one or more amplification stages between a demodulator and a baseband digital signal processor (DSP). During operation, the system calibrates values of static DC offset associated with a plurality of gain settings for at least one amplification stage, stores the calibrated DC offset values in a lookup table, receives a current gain setting for the amplification stage, maps a DC offset value from the lookup table based on the current gain setting, and cancels static DC offset for the amplification stage using the mapped DC offset value.
Abstract:
One embodiment of the present invention provides an automatic gain control (AGC) module for a wireless communication system that includes a plurality of amplifiers. The AGC module includes a receiving mechanism configured to receive an input that indicates a total amount of gain adjustment; a collecting mechanism configured to collect a number of parameters associated with the amplifiers; a determining mechanism configured to determine a desired performance requirement; a gain-control engine configured to generate a gain profile for the amplifiers based on the collected parameters, the total amount of gain, and the desired performance requirement; and an output mechanism configured to output a plurality of control signals based on the generated gain profile, wherein a respective control signal independently controls gain of a corresponding amplifier, thereby enabling the wireless communication system to achieve the total amount of gain adjustment while meeting the desired performance requirement.
Abstract:
One embodiment of the present invention provides a system for controlling at least one RF front-end component. During operation, the system receives, at a programmable logic chip from a baseband chip, a command; identifies the RF front-end component based on an address indicated by the command; and sends a control signal included in the command to the identified RF front-end component via the second interface. The programmable logic chip is coupled to the baseband chip via a first interface, and is coupled to the at least one RF front-end component via a second interface.