Abstract:
DLL4 binding proteins are described herein, including antibodies, CDR-grafted antibodies, humanized antibodies, and DLL4 binding fragments thereof, proteins that bind DLL4 with high affinity, and DLL4 binding proteins that neutralize DLL4 and/or VEGF activity. The DLL4 binding proteins are useful for treating or preventing cancers and tumors and especially for treating or preventing tumor angiogenesis.
Abstract:
Improved DLL4 binding proteins are described, including antibodies, CDR-grafted antibodies, human antibodies, and DLL4 binding fragments thereof, proteins that bind DLL4 with high affinity, and DLL4 binding proteins that neutralize DLL4 activity. The DLL4 binding proteins are useful for treating or preventing cancers and tumors and especially for treating or preventing tumor angiogenesis, and/or other angiogenesis-dependent diseases such as ocular neovascularization, or angiogenesis-independent diseases characterized by aberrant DLL4 expression or activity such as autoimmune disorders including multiple sclerosis.
Abstract:
Engineered monovalent binding proteins that bind to one or more ligands (such as an antigen) via one binding domain are provided, along with methods of making and uses in the prevention, diagnosis, and/or treatment of disease.
Abstract:
The present invention relates to engineered multivalent and multispecific binding proteins, methods of making, and specifically to their uses in the prevention, diagnosis, and/or treatment of disease.
Abstract:
The present invention encompasses prostaglandin E2 (PGE2) binding proteins. The invention relates to antibodies that are wild-type, chimeric, CDR grafted and humanized. Preferred antibodies have high affinity for prostaglandin E2 and neutralize prostaglandin E2 activity in vitro and in vivo. An antibody of the invention can be a full-length antibody, or an antigen-binding portion thereof. Methods of making and methods of using the antibodies of the invention are also provided. The antibodies, or antigen-binding portions, of the invention are useful for detecting prostaglandin E2 and for inhibiting prostaglandin E2 activity, e.g., in a human subject suffering from a disorder in which prostaglandin E2 activity is detrimental.
Abstract:
Engineered binding proteins comprising a modified constant region, such as an IgG constant region modified to contain a CH2 domain from an IgM, a CH2 domain from an IgE, or a variant thereof, are disclosed. The binding proteins can be multispecific, including bi-, tri-, and tetra-specific constructs. Also disclosed are uses of the binding proteins in the diagnosis, prevention, and/or treatment of disease.
Abstract:
The present invention relates to engineered multivalent and multispecific binding proteins, methods of making, and specifically to their uses in the prevention, diagnosis, and/or treatment of disease.
Abstract:
Engineered multivalent and multispecific binding proteins that bind two different (e.g., nonoverlapping) epitopes of the same receptor or two different receptors expressed on the same cell are provided, along with methods of making and uses in the prevention, diagnosis, and/or treatment of disease.
Abstract:
The present application relates to isolated proteins, particularly monoclonal antibodies, in particular CDR-grafted, humanized antibodies which bind to RAGE protein. Specifically, these antibodies have the ability to inhibit the binding of RAGE to its various ligands. The antibodies or portions thereof of described in the present application are useful for treating a disease or disorder characterized by or induced by pathophysiological ligands of RAGE, for example missfolded proteins like amyloid β and advanced glycation-end-products.