摘要:
A display driving method drives a display to make a gradation display on a screen of the display depending on a length of a light emission time in each of subfields forming 1 field, where 1 field is a time in which an image is displayed, N sub fields SF1 throuh SFN form 1 field, and each sub field includes an address display-time in which a wall charge is formed with respect to all pixels which are to emit light within the sub field and a sustain time which is equal to the light emission time and determines a luminance level. The display driving method includes the steps of setting the sustain times of each of the sub fields approximately constant within 1 field, and displaying image data on the display using N+1 gradation levels from a luminance level 0 to a luminance level N.
摘要:
A flat display comprising an address current detecting means 3 for detecting a value of address current consumed for each frame to be displayed on the flat display, a comparator 4 for comparing the address current value detected by the address current detecting means 3 with a given reference value, and an address frequency control means 5 for controlling address frequencies related to a display frame in response to the output of the comparator 4.
摘要:
A display driving method drives a display to make a gradation display on a screen of the display depending on a length of a light emission time in each of sub fields forming 1 field, where 1 field is a time in which an image is displayed, N sub fields SF1 through SFN form 1 field, and each sub field includes an address display-time in which a wall charge is formed with respect to all pixels which are to emit light within the sub field and a sustain time which is equal to the light emission time and determines a luminance level. The display driving method includes the steps of setting the sustain times of each of the sub fields approximately constant within 1 field, and displaying image data on the display using N+1 gradation levels from a luminance level 0 to a luminance level N.
摘要:
A display driving method drives a display to make a gradation display on a screen of the display depending on a length of a light emission time in each of sub fields forming 1 field, where 1 field is a time in which an image is displayed, N sub fields SF1 through SFN form 1 field, and each sub field includes an address display-time in which a wall charge is formed with respect to all pixels which are to emit light within the sub field and a sustain time which is equal to the light emission time and determines a luminance level. The display driving method includes the steps of setting the sustain times of each of the sub fields approximately constant within 1 field, and displaying image data on the display using N+1 gradation levels from a luminance level 0 to a luminance level N.
摘要:
A method of controlling the gray scale of a plasma display device has a forming step of forming a frame for an image by a plurality of subframes each having a different brightness, a setting step of setting the number of sustain emissions of each subframe in an anti-geometrical progression corresponding to the brightness of each subframe, and a displaying step of displaying the image on the plasma display device by a gray scale display having a specific brightness. The number of sustain emissions in each subframe is set individually by the each subframe, and this establishes a linear relation between the gray level and the corresponding brightness Therefore, an enhancement of display quality of the plasma display device can be realized.
摘要:
A method of controlling the gray scale of a plasma display device has a forming step of forming a frame for an image by a plurality of subframes each having a different brightness, a setting step of setting the number of sustain emissions of each subframe in an anti-geometrical progression corresponding to the brightness of each subframe, and a displaying step of displaying the image on the plasma display device by a gray scale display having a specific brightness. The number of sustain emissions in each subframe is set individually by the each subframe, and this establishes a linear relation between the gray level and the corresponding brightness Therefore, an enhancement of display quality of the plasma display device can be realized. A method of controlling the gray scale of a plasma display device has a forming step of forming a frame for an image by a plurality of subframes each having a different brightness, a setting step of setting the number of sustain emissions of each subframe in an anti-geometrical progression corresponding to the brightness of each subframe, and a displaying step of displaying the image on the plasma display device by a gray scale display having a specific brightness. The number of sustain emission in each subframe is set individually by the each subframe, and this establishes a linear relation between the gray level and the corresponding brightness. Therefore, an enhancement of display quality of the plasma display device can be realized.
摘要翻译:<?delete-start id =“DEL-S-00001”date =“20090623”?一种控制等离子体显示装置的灰度级的方法具有通过多个子帧形成图像帧的形成步骤 具有不同亮度的设置步骤,将每个子帧的维持发射次数设置为与每个子帧的亮度对应的反几何级数的设置步骤,以及通过灰度显示在等离子体显示装置上显示图像的显示步骤 具有特定的亮度。 每个子帧中的维持发射次数由每个子帧分别设定,这就建立了灰度级与对应的亮度之间的线性关系。因此,可以实现等离子体显示装置的显示质量的提高。 end id =“DEL-S-00001”?> <?insert-start id =“INS-S-00001”date =“20090623”?>等离子体显示装置的灰度级的控制方法具有: 通过具有不同亮度的多个子帧形成用于图像的帧;设置步骤,将每个子帧的维持发射次数设置为与每个子帧的亮度相对应的反几何级数;以及显示步骤,显示步骤 通过具有特定亮度的灰度显示器在等离子体显示装置上的图像。 每个子帧中的每个子帧的维持发射次数由每个子帧分别设置,这就建立了灰度级与对应的亮度之间的线性关系。 因此,可以实现等离子体显示装置的显示质量的提高。<?insert-end id =“INS-S-00001”→>
摘要:
A display driving method drives a display to make a gradation display on a screen of the display depending on a length of a light emission time in each of sub fields forming 1 field, where 1 field is a time in which an image is displayed, N sub fields SF1 through SFN form 1 field, and each sub field includes an address display-time in which a wall charge is formed with respect to all pixels which are to emit light within the sub field and a sustain time which is equal to the light emission time and determines a luminance level. The display driving method includes the steps of setting the sustain times of each of the sub fields approximately constant within 1 field, and displaying image data on the display using N+1 gradation levels from a luminance level 0 to a luminance level N.
摘要:
An image processing device has an error distribution unit, and a multiplier. The error distribution unit carries out an error distribution operation to artificially increase the number of shades to be displayed on a display. The multiplier multiplies an input signal by a multiplication coefficient, so that the input signal is separated into display data and error data along a bit boundary and the error distribution operation is carried out on the input signal. Further, a semiconductor integrated circuit has a dither pattern generator, an adder, and an error distribution unit. The dither pattern generator stores a plurality of dither patterns in advance and receives an input image signal, the adder receives the input image signal and a pattern signal from the dither pattern generator, and the error distribution unit carries out an error distribution operation on the output of the adder. Therefore, the image processing device can realize a smooth display characteristic for the entire range of input shades.
摘要:
In a flat display, an address current detecting unit detects a value of address current consumed during each display frame, a comparator compares the address current value detected by the address current detecting unit with a given reference value, and an address-frequency control unit controls address frequencies related to the display frame in response to the output of the comparator.
摘要:
A display apparatus displaying gray scale by using a subfield method has a main path, a sub path, a switch circuit, a motion region detection circuit, a first judging circuit, a level detection circuit, a motion detection correction circuit, and a second judging circuit. The switch circuit outputs a first image signal generated by the main path or a second image signal generated by the sub path by switching therebetween, and the first judging circuit outputs a first motion signal in accordance with an output of the motion region detection circuit. The motion detection correction circuit receives the first motion signal and a level signal, and outputs a second motion signal in accordance with the level signal, and the second judging circuit receives the second motion signal and the level signal, and outputs a switching control signal to the switch circuit.