Abstract:
A refrigerant system is provided with a variable speed drive for at least one of its fluid-moving devices, wherein the variable speed drive is provided by an automated mechanical drive. In the disclosed embodiment, one of the pulleys for driving the fluid-moving device has a variable diameter to vary the speed at which the fluid-moving device is driven. The pulley may include two plates that are biased in one direction by a spring or permanent magnet force, and in an opposed direction by a hydraulic or electro-magnetic force. A control adjusts the amount of hydraulic or electro-magnetic force delivered to the plates to achieve a desired speed for the fluid-moving device.
Abstract:
In compression systems having multiple sources of pulsation induced noise, provisions are made to reduce the noise by selectively varying the length of adjacent refrigerant lines leading to a common refrigerant manifold. Each of the refrigerant lines is associated with a particular noise source. The feature can be incorporated into compressors operating in parallel or in a single multi-rotor compressor having multiple suction or/and discharge ports. It is equally applicable to both discharge and suction ports.
Abstract:
A refrigerant system includes a compressor that has safe operating limits that are also built into a refrigerant system control to protect the compressor. Under certain conditions, these safe operational limits may be changed to allow the compressor to operate beyond the safety limits at least for a period of time.
Abstract:
A refrigerant system incorporates an expander. At least a portion of refrigerant bypasses an evaporator and is injected into the compression process to cool main refrigerant vapor flow and compressor elements. In disclosed embodiments, the injected refrigerant may be partially expanded in the expander and routed either into the compressor suction or to an intermediate point in the compression process. A valve may control the amount of the injected refrigerant to achieve desired operational characteristics for the refrigerant system.
Abstract:
A scroll compressor is provided with a passage for providing both an unloader function and an economizer injection function. This common passage communicates with separate ports. The ports that are exclusively used for by-pass unloading operation are open only during by-pass unloading operation, but blocked off by a check valve during vapor injection operation. The other, normally smaller vapor injection ports are open for both vapor injection and by-pass unloading operation. By utilizing these two sets of ports, a smaller total port area is provided for vapor injection operation and a much larger total open port area for by-pass operation. The different open port areas for by-pass unloading operation and vapor injection operation allows optimization of compressor operation at both of those regimes of operation.
Abstract:
A refrigerant system operates in a transcritical regime. An economizer circuit is incorporated into the refrigerant system, and includes an economizer injection line for refrigerant injection above the critical point. In one of the disclosed embodiments, the refrigerant utilized is CO2.
Abstract:
A refrigerant system is provided with pulse width modulation control to adjust the amount of refrigerant compressed by a compressor. In one embodiment, a pulse width modulation control controls a suction modulation valve cycled between open and closed positions. In a second embodiment, the compressor itself is cycled between a position at which it compresses refrigerant and a position at which the compression elements are disengaged. In either embodiment, the control also cycles the expansion device in concert with cycling the pulse width modulation valve or the compressor. In this manner, pressure fluctuations in the refrigerant system do not exceed desirable levels. Typical cycle time for pulse width modulation control is between 5 and 30 seconds, and typical offset (delay) time for an expansion device may be between 0 and 3 seconds.
Abstract:
An economized refrigerant vapor compression system (10) for water heating includes a refrigerant compression device (20), a refrigerant-to-water heat exchanger (30), an economizer heat exchanger (60), an evaporator (40) and a refrigerant circuit (70) providing a first flow path (OA, 70B, 70C, 70D) connecting the compression device (20), the refrigerant-to-liquid heat exchanger (30), the economizer heat exchanger (60) and the evaporator (40) in refrigerant circulation flow communication and a second flow path (70E) connecting the first flow path (62) through the economizer heat exchanger (60) to the compression device (20). The economizer heat exchanger (60) has a first pass (62) for receiving a first portion of the refrigerant having traversed he refrigerant-to-liquid heat exchanger and a second pass (64) for receiving a second portion of the refrigerant having traversed the refrigerant-to-liquid heat exchanger. The refrigerant system (10) has a bypass unloading branch (70F) with a c pass flow control device (92) connecting economizer (70E) and suction (OD) refrigerant lines for providing additional capacity adjustment.
Abstract:
An adequate operation and performance of a refrigerant system includes the steps of adding a refrigerant that is different from the original refrigerant, into the refrigerant system should any operational problems be observed during operation of the refrigerant system. As an example, should the refrigerant system be cycling frequently, a lower pressure refrigerant may be added or replace, partially or fully, the refrigerant the system being initially charged with. By making this change, the present invention can, for example, lower the provided system capacity, and hence reduce the amount of cycling. Additionally, conditioned space comfort and system reliability would be improved. Further, changes over time, such as the degradation of the heat exchanger performance, and their negative effect on system operation can be alleviated by such a refrigerant substitution.
Abstract:
Methods and apparatus are provided for enhancing the performance of rooftop air conditioning systems by operating such systems with an economizer cycle and utilizing a blend incorporating R32 and R125 refrigerants as a working medium, wherein such benefits are related to at least the performance (e.g. capacity and/or the energy efficiency ratio) of the rooftop air conditioning system operating at various environments (e.g. temperatures at and above 95° F.).