Abstract:
A log-structured data store may implement efficient garbage collection. Log records may be maintained in data blocks according to a log record sequence. Based, at least in part, on a log reclamation point, the log records may be evaluated to identify data blocks to reclaim that have log records in the log sequence prior to the log reclamation point. New versions of data pages updated by log records in the identified data blocks may be generated and stored in base page storage for the log structured data store. The identified data blocks may then be reclaimed for storing new data.
Abstract:
Variably-sized data objects may be received for storage at a data store. The data store may have a minimum write size. In various embodiments, received data objects may be divided into one or more equally-sized portions that equal the minimum write size of the data store and a remainder of the data object. The one or more equally-sized portions of the data object may be stored in data blocks that are equivalent to the minimum write size of the data store in a fixed-size data storage area of the data store. The remainder of the data object may be stored in a variably-sized data storage area of the data store along with one or more other data portions in a same data block. The remainder of the data object may, in some embodiments, be linked to the one or more equally-sized portions of the data object.
Abstract:
A database system may include a database service and a separate distributed storage service. The database service (or a database engine head node thereof) may be responsible for query parsing, optimization, and execution, transactionality, and consistency, while the storage service may be responsible for generating data pages from redo log records and for durability of those data pages. For example, in response to a write request directed to a particular data page, the database engine head node may generate a redo log record and send it, but not the data page, to a storage service node. The storage service node may store the redo log record and return a write acknowledgement to the database service prior to applying the redo log record. The server node may apply the redo log record and other redo log records to a previously stored version of the data page to create a current version.
Abstract:
A database system may include a database service and a separate distributed storage service. The database service (or a database engine head node thereof) may be responsible for query parsing, optimization, and execution, transactionality, and consistency, while the storage service may be responsible for generating data pages from redo log records and for durability of those data pages. For example, in response to a write request directed to a particular data page, the database engine head node may generate a redo log record and send it, but not the data page, to a storage service node. The storage service node may store the redo log record and return a write acknowledgement to the database service prior to applying the redo log record. The server node may apply the redo log record and other redo log records to a previously stored version of the data page to create a current version.
Abstract:
A data store may implement variable data replication and quorum-based durability schemes. Write requests may be maintained in complete views of the data or incomplete views of the data at storage nodes in a quorum set in the data store. Write requests may be received at different storage nodes sufficient to establish a write quorum, and stored in the replicas of the data at the storage nodes where they are received. Storage nodes maintaining incomplete views of the data may determine that each of the storage nodes maintaining a complete view of the data in the quorum set stores certain write requests, and in response, may reclaim storage space for those write requests included in the incomplete views of the data in order to store other data at the storage node.
Abstract:
A database system may include a database service and a separate distributed storage service. The database service (or a database engine head node thereof) may be responsible for query parsing, optimization, and execution, transactionality, and consistency, while the storage service may be responsible for generating data pages from redo log records and for durability of those data pages. For example, in response to a write request directed to a particular data page, the database engine head node may generate a redo log record and send it, but not the data page, to a storage service node. The storage service node may store the redo log record and return a write acknowledgement to the database service prior to applying the redo log record. The server node may apply the redo log record and other redo log records to a previously stored version of the data page to create a current version.
Abstract:
Hybrid quorum policies may be implemented for access requests to state maintained in a distributed system. An update to state maintained in a distributed system may be sent to multiple nodes in the distributed system maintain the state in order to satisfy a hybrid quorum policy for updating the state in the distributed system. The hybrid quorum policy may include individual quorum policies for multiple quorum sets including nodes of the distributed system. Acknowledgments received from nodes in the distributed system indicating that the update is performed may be evaluated according to the individual quorum policies to determine whether the hybrid quorum policy is satisfied. If the hybrid quorum policy is satisfied, then the update to the state may be considered durable.
Abstract:
A distributed database system may implement log-structured distributed storage using a single log sequence number space. A log for a data volume may be maintained in a log-structured distributed storage system. The log may be segmented across multiple protection groups according to a partitioning of user data for the data volume. Updates to the log may be assigned a log sequence number from a log sequence number space for the data volume. A protection group may be determined for an update according to which partition of user data space the update pertains. Metadata to be included with the log record may indicate a previous log sequence number of a log record maintained at the protection group. The log record may be sent to the protection group and identified as committed based on acknowledgments received from storage nodes implementing the protection group.
Abstract:
A database system may include a database service and a separate distributed storage service. The database service (or a database engine head node thereof) may be responsible for query parsing, optimization, and execution, transactionality, and consistency, while the storage service may be responsible for generating data pages from redo log records and for durability of those data pages. For example, in response to a write request directed to a particular data page, the database engine head node may generate a redo log record and send it, but not the data page, to a storage service node. The storage service node may store the redo log record and return a write acknowledgement to the database service prior to applying the redo log record. The server node may apply the redo log record and other redo log records to a previously stored version of the data page to create a current version.
Abstract:
A database system may include a database service and a separate distributed storage service. The database service (or a database engine head node thereof) may be responsible for query parsing, optimization, and execution, transactionality, and consistency, while the storage service may be responsible for generating data pages from redo log records and for durability of those data pages. For example, in response to a write request directed to a particular data page, the database engine head node may generate a redo log record and send it, but not the data page, to a storage service node. The storage service node may store the redo log record and return a write acknowledgement to the database service prior to applying the redo log record. The server node may apply the redo log record and other redo log records to a previously stored version of the data page to create a current version.