Abstract:
Integrated digital isolators comprise a first transformer coil or capacitor plate mounted on an integrated circuit substrate, and separated from a second transformer coil or capacitor plate via an electrically insulating isolation layer. The electrical isolation that is achieved is dependent upon the material and thickness of the isolation layer. In order to reduce the amount of time required for fabrication while still allowing thick isolation layers to be deployed, in examples of the disclosure pre-formed sheets or tapes of dielectric material are applied to the substrate over the first transformer coil or capacitive plate, for example by being rolled onto the substrate using a heated roller. Such a technique results in a thick isolation layer that is formed using a simple process and much more quickly and reliably than conventional spin-coating or deposition techniques.
Abstract:
Several features are disclosed that improve the operating performance of MEMS switches such that they exhibit improved in-service life and better control over switching on and off.
Abstract:
A method of trimming a component is provided in which the component is protected from oxidation or changes in stress after trimming. As part of the method, a protective glass cover is bonded to the surface of a semiconductor substrate prior to trimming (e.g., laser trimming) of a component. This can protect the component from oxidation after trimming, which may change its value or a parameter of the component. It can also protect the component from changes in stress acting on it or on the die adjacent it during packaging, which may also change a value or parameter of the component.