Abstract:
An isolator device and a corresponding method of forming the isolator device to include first and second electrodes, a layer of first dielectric material between the first and second electrodes, and at least one region of second dielectric material between the layer of first dielectric material and at least one of the first and second electrodes. The second dielectric material has a higher relative permittivity than the first dielectric material.
Abstract:
An isolator device and a corresponding method of forming the isolator device to include first and second electrodes, a layer of first dielectric material between the first and second electrodes, and at least one region of second dielectric material between the layer of first dielectric material and at least one of the first and second electrodes. The second dielectric material has a higher relative permittivity than the first dielectric material.
Abstract:
A method of trimming a component is provided in which the component is protected from oxidation or changes in stress after trimming. As part of the method, a protective glass cover is bonded to the surface of a semiconductor substrate prior to trimming (e.g., laser trimming) of a component. This can protect the component from oxidation after trimming, which may change its value or a parameter of the component. It can also protect the component from changes in stress acting on it or on the die adjacent it during packaging, which may also change a value or parameter of the component.
Abstract:
Suspended microelectromechanical systems (MEMS) devices including a stack of one or more materials over a cavity in a substrate are described. The suspended MEMS device may be formed by forming the stack, which may include one or more electrode layers and an active layer, over the substrate and removing part of the substrate underneath the stack to form the cavity. The resulting suspended MEMS device may include one or more channels that extend from a surface of the device to the cavity and the one or more channels have sidewalls with a spacer material. The cavity may have rounded corners and may extend beyond the one or more channels to form one or more undercut regions. The manner of fabrication may allow for forming the stack layers with a high degree of planarity.
Abstract:
A method of trimming a component is provided in which the component is protected from oxidation or changes in stress after trimming. As part of the method, a protective glass cover is bonded to the surface of a semiconductor substrate prior to trimming (e.g., laser trimming) of a component. This can protect the component from oxidation after trimming, which may change its value or a parameter of the component. It can also protect the component from changes in stress acting on it or on the die adjacent it during packaging, which may also change a value or parameter of the component.