Abstract:
A power converter can be implemented as a series of power conversion stages, including a wireless power conversion stage. In typical embodiments, the power converter receives power directly from mains voltage and outputs power to a battery within an electronic device. A transmitter side of the power converter converts alternating current received from a power source (e.g., mains voltage) to an alternating current suitable for applying to a primary coil of the wireless power conversion stage of the power converter.
Abstract:
A power converter can be configured to convert an AC input voltage into a regulated DC output voltage while maintaining the input current in phase with the rectified AC input voltage. A control circuit of the power converter may be configured to selectively enable switching of at least one switching device of the power converter responsive to a determination that the input voltage is greater than a threshold voltage and to selectively disable switching of the at least one switching device responsive to a determination that the rectified AC input voltage is less than the threshold voltage. The control circuit may be configured to selectively enable and disable switching using an active burst mode signal having a frequency lower than a switching frequency of the converter. The control circuit may be still further configured to operate at least one switching device of the converter in a zero voltage switching condition.
Abstract:
A wireless power transmitting device transmits wireless power signals to a wireless power receiving device using an output circuit that includes a wireless power transmitting coil. Measurement circuitry is coupled to the output circuit to help determine whether the wireless power receiving device is present and ready to accept transmission of wireless power. The measurement circuitry includes a measurement circuit that is coupled to the output circuit and that measures signals while oscillator circuitry supplies the output circuit with signals at a probe frequency. The measurement circuitry also includes a measurement circuit that is coupled to the output circuit and that measures signals while the oscillator circuitry sweeps signals applied to the output circuit between a first frequency and a second frequency to detect sensitive devices such as radio-frequency identification devices. Impulse response circuitry in the measurement circuitry is used to make inductance and Q factor measurements.
Abstract:
The embodiments discussed herein relate to systems, methods, and apparatus for controlling power consumption of a computing device in a standby or sleep mode. During the standby or sleep mode an external device can be plugged into the computing device. The external device can be provided power from a standby power supply until a determination is made as to whether a main power supply is operating. The determination can be based on comparing the output of the main power supply to an output of the standby power supply. If the main power supply is operating, a switch in the computing device can close to allow the main power supply to provide power to the external device. Moreover, in some embodiments, the switch can close based exclusively on a current demand of the external device from the standby power supply.
Abstract:
A method and system for reducing acoustic power supply noise, specifically acoustic noise related to power supply switching frequencies in a computing device, is disclosed. In one embodiment, a controller can monitor power consumed by the computing device, and an operational state of the computing device can be determined. If the computing device is in a first operational state and the power consumed is greater than a threshold amount, then the power supply can be operated at a first switching frequency or mode of operation, thereby avoiding switching frequencies that can produce acoustic noise.
Abstract:
The disclosed embodiments provide a system that facilitates operation of a power adapter in hiccup mode. The system includes a bleeding mechanism that reduces a hiccup time of the hiccup mode by increasing a leakage current of the power adapter. The system also includes an activation mechanism that activates the bleeding mechanism upon detecting a voltage drop associated with the hiccup mode.
Abstract:
A power converter can include a rectifier that receives an AC input voltage and produces a rectified output voltage, a power factor correction (PFC) converter having an input coupled that receives the rectified output voltage of the rectifier and an output that provides an intermediate DC bus voltage, a DC-DC converter having an input that receives the intermediate DC bus voltage and produces a regulated DC output voltage, and control circuitry for the PFC converter stage that includes a relatively slower control loop that controls the PFC converter during steady state load conditions and at least one relatively faster control loop that controls the PFC converter during transient load conditions.
Abstract:
A power converter can include a DC-DC converter stage having an input coupled to an input of the power converter and an output coupled to an output of the converter and an active power buffer coupled to the output of the power converter. The active power buffer can further include an energy storage capacitor and one or more switching devices selectively coupling the energy storage capacitor to the output of the power converter so as to alternately store energy in and discharge energy from the energy storage capacitor. Control circuitry of the power converter can include a first control loop that operates the DC-DC converter stage to regulate an average voltage across the energy storage capacitor of the active power buffer and a second control loop that operates the one or more switching devices of the active power buffer to regulate an output voltage of the power converter.
Abstract:
Circuits, methods, and apparatus that may provide power supply voltages in a safe and reliable manner that meets safety and regulatory concerns and does not exceed physical limitations of cables and other circuits and components used to provide the power supply voltages. One example may provide a cable having a sufficient number of conductors to provide power without exceeding a maximum current density for the conductors. Another example may provide a cable having more than the sufficient number of conductors in order to provide an amount of redundancy. Current sense circuits may be included for one or more conductors. When an excess current is sensed, a power source in the power supply may be shut down, the power source may be disconnected from one or more conductors, or both events may occur.
Abstract:
A power converter can be implemented as a series of power conversion stages, including a wireless power conversion stage. In typical embodiments, the power converter receives power directly from mains voltage and outputs power to a battery within an electronic device. A transmitter side of the power converter converts alternating current received from a power source (e.g., mains voltage) to an alternating current suitable for applying to a primary coil of the wireless power conversion stage of the power converter.