Abstract:
The invention relates to a resin composition comprising a blend of: a) 10 to 90% by weight of at least one fluoropolymer resin and b) 90 to 10% by weight of at least one semi- crystalline polyester resin, based on the total weight of the fluoropolymer resin and semi-crystalline polymer resin. The invention also relates to a method for producing such resin composition, to a powder coating composition comprising such resin composition and to the use of such resin composition, in particular for architectural powder coating.
Abstract:
An impregnated fibrous material comprising a fibrous material of continuous fibers and at least one thermoplastic polymer matrix, wherein at least one thermoplastic polymer is a non-reactive amorphous polymer whose glass transition temperature is such that Tp≥80° C., or a non-reactive semi-crystalline polymer whose melting temperature is Tf≥150° C., where Tg and Tf are determined by differential scanning calorimetry (DSC) according to standard 11357-2:2013 and 11357-3:2013 respectively, a fiber content by volume is constant in at least 70% of the volume of the impregnated fibrous material, the fiber content in said impregnated fibrous material being between 45 and 65% by volume on both sides of said fibrous material, a porosity rate in said impregnated fibrous material being less than 10%.
Abstract:
The invention relates to a composition for a thermoplastic material comprising: 0 to 70% by weight, preferably 20 to 60% by weight, of short reinforcing fibers, 30 to 100% by weight, preferably 40 to 80% by weight, of a thermoplastic matrix based on at least one semi-crystalline polyamide polymer, 0 to 50% of additives and/or other polymers, where said semi-crystalline polyamide polymer is: a) a reactive composition comprising or consisting of at least one reactive polyamide prepolymer precursor of said semi-crystalline polyamide polymer, or in alternative to a), b) a non-reactive composition of at least one polyamide polymer where said composition is that of said thermoplastic matrix defined above, and said reactive polyamide prepolymer for the composition a) and said polyamide polymer for the composition b) comprising or consisting of at least one BACT/XT copolyamide.
Abstract:
A method of manufacturing a component made of composite material whereby the said component is obtained from a preform containing local reinforcers and a first resin of low viscosity. The method includes: creation of the said preform comprising a first fibrous material and the said local reinforcers being in the form of reinforcers formed of a second fibrous material having fibres of mechanical strength greater than that of the fibres of the first fibrous material, so that they exhibit an elastic modulus or breaking stress at least 30% higher than that of the fibres of the said first fibrous material, the said second fibrous material being pre-impregnated with a thermoplastic, acrylic or polyamide polymer second resin having a glass transition temperature (Tg) above 80° C., the amount of polymer second resin being comprised between 25% and 60% by volume with respect to the total volume of the said second fibrous material.
Abstract:
The invention relates to a composition for thermoplastic material comprising: 0 to 70% by weight, preferentially 20% to 60% by weight, of short reinforcing fibers, 30% to 100% by weight, preferentially 40% to 80% by weight, of a thermoplastic matrix based on at least one semi-crystalline polyamide polymer, 0 to 50% of additives and/or other polymers, said semi-crystalline polyamide polymer being: a) a reactive composition comprising or consisting of at least one reactive polyamide prepolymer which is a precursor of said semi-crystalline polyamide polymer, or, as an alternative to a), b) a nonreactive composition of at least one polyamide polymer, said composition being that of said thermoplastic matrix defined above, and said reactive polyamide prepolymer of the composition a) and said polyamide polymer of the composition b) comprising or consisting of at least one BACT/XT copolyamide.
Abstract:
A method of manufacturing an impregnated fibrous material including a fibrous material made of continuous fibers and at least one thermoplastic polymer matrix, the method including pre-impregnating the fibrous material while it is in the form of a roving or several parallel rovings with the thermoplastic material and heating the thermoplastic matrix for melting, or maintaining in the molten state, the thermoplastic polymer after pre-impregnation, the at least one heating step being carried out by means of at least one heat-conducting spreading part (E) and at least one heating system, with the exception of a heated calendar, the roving or the rovings being in contact with part or all of the surface of the at least one spreading part (E) and partially or wholly passing over the surface of the at least one spreading part (E) at the level of the heating system.
Abstract:
An impregnated fibrous material comprising a fibrous material made of continuous fiber and at least one thermoplastic polymer matrix, wherein the at least one thermoplastic polymer is an non-reactive amorphous polymer, the glass transition temperature of which is such that Tg≥80° C., or a non-reactive semi-crystalline polymer, the melting temperature of which is Tf≥150° C., the fiber volume ratio is constant in at least 70% of the volume of the tape or ribbon, the fiber ratio in the pre-impregnated fibrous material ranging from 45 to 65% by volume, the porosity rate in the pre-impregnated fibrous material being less than 10%.
Abstract:
The invention relates to a method for manufacturing a thermoplastic material, in particular a mechanical part made from said material, characterised in that it includes at least one step of injection moulding a polyamide composition for a thermoplastic material or a composition of a thermoplastic material, or a step implemented by extrusion of same, said material including a thermoplastic matrix made from at least one thermoplastic polymer.
Abstract:
A composition for a thermoplastic composite material, wherein said matrix thermoplastic polymer is a semi-crystalline polyamide polymer including amide units Z, 10T and 6T; wherein Z corresponds to an amide unit resulting from the condensation of at least one lactam or at least one C6-C14 amino acid, from the condensation of a diamine and a diacid X.Y, X and Y being at C4-C18, the molar rate of Z being 0.0%
Abstract:
A composition including at least one polyamide polymer obtained from at least one reactive polyamide prepolymer including at least one chain extender (PA1-All1-PA1), the polyamide polymer being prepared at a temperature T1 no lower than the temperature melting temperature or glass transition temperature of the polymer and having a mean molecular weight Mn1. The composition has a melt viscosity which can be modulated according to the temperature to which the composition is exposed, wherein the temperature is between T2 and T3, T2 and T3 being higher than T1, and the melt viscosity η2 or η′3 observed at the temperature T2 or T3, respectively, being lower than the melt viscosity η2 or η3 of the polyamide polymer, which does not include a chain extender and has the same mean molecular weight Mn1(PA1) observed at the same temperature T2 or T3. The composition includes one or more polyamides.