Abstract:
A well treatment fluid contains a surface modifying treatment agent having an anchor and a hydrophobic tail. The surface modifying treatment agent is an organophosphorus acid derivative. After the well treatment fluid is pumped into a well penetrating the subterranean formation, the anchor binds to the surface of the formation. The subterranean formation is a siliceous formation or a metal oxide-containing subterranean formation. The anchor bonds to a Si atom when the formation is a siliceous formation and to the metal of the metal oxide when the formation is a metal oxide-containing formation. After being bound to the surface of the formation, frictional drag within the well is reduced. This allows for faster recovery of formation fluids. The bonding of the surface modifying treatment agent onto the formation may further be enhanced by first pre-treating the formation with a non-aqueous fluid. By increasing the number of sites for the surface modifying treatment agent to bind onto the surface of the subterranean formation, productivity is improved.
Abstract:
A composite having a solid particulate and a surface modifying treatment agent on the solid particulate wherein the surface modifying treatment agent has a hydrophobic tail and an anchor for adhering the hydrophobic tail onto the solid particulate. The anchor may be metal and the hydrophobic tail may be an organo-silicon material, a fluorinated hydrocarbon or both an organo-silicon material and a fluorinated hydrocarbon. The composite may be used as a proppant in a hydraulic fracturing operation as well as a sand control particulate in a gravel packing operation. The presence of the surface modifying treatment agent on the surface of the solid particulate reduces the generation of fines and dust as well as the migration of sand during a hydraulic fracturing operation or a sand control operation. The presence of the surface modifying treatment agent on the surface of the solid particulate further enhances the crush resistance of the solid particulate.
Abstract:
Fouling caused by contaminants onto a metallic tubular, flow conduit or vessel in an underground reservoir or extending from or to an underground reservoir may be inhibited by applying onto the surface of the metallic tubular, flow conduit or vessel a treatment agent comprising a hydrophobic tail and an anchor. The anchor attaches the treatment agent onto the surface of the metallic tubular, flow conduit or vessel.
Abstract:
A well treatment composite is characterized by particulates wherein at least a portion of the substrate of the particulates is coated with a polycationic polymer. The presence of the polycationic polymer on the surface of the well treatment particulates reduces the generation of dust and fines during a well treatment operation. The polycationic polymer further reduces the amount of dust or fines generated during transport of the well treatment particulates to a remote location as well during the manufacture or processing of well treatment particulates.
Abstract:
Well treatment particulates are coated with polyionic material and a composite is formed comprising multiple layers of polyelectrolyte, each layer composed of polyionic material counter to the polyionic material of the polyelectrolyte layer to which it is adjacent.
Abstract:
A deformable particulate material made of cement materials such as aluminosilicate cement and having an aspect ratio of greater than 1 to about 25 may be mixed with conventional proppants to give a blend with improved flow back capacity when the blend is injected into a hydraulic fracture created in a subterranean formation.
Abstract:
Relatively low strength and/or relatively low density, but ductile materials may be folded or crumpled and finely divided to give proppants for introduction into hydraulic fractures, where the folded or crumpled structure of the proppants gives relatively increased strength relative to the relatively low strength and/or relatively low density of the materials. Materials not previously considered suitable for proppants may be considered when structure or configured in this manner. Similarly to the case where crumpled paper within a cardboard box keeps it from collapsing, the folded or crumpled material spontaneously develops structural rigidity at relatively low volume fractions without a specific externally imposed design. The folded or crumpled proppants may also be used alone or together with conventional proppants for sand control in gravel packs or frac packs.
Abstract:
Improving the knowledge about how hydraulic fracture networks are generated in subsurface shale volumes in unconventional wellbores may be accomplished with various configurations of at least one diagnostic lateral wellbore using at least one diagnostic device disposed in the diagnostic lateral wellbore. By extending diagnostic lateral wellbores from adjacent lateral wellbores and/or separately drilling diagnostic lateral wellbores, and analyzing signals received by diagnostic devices placed in the diagnostic lateral wellbores, knowledge about fracture networks, the parameters that control fracture geometry and reservoir production and how reservoirs react to refracturing techniques may be greatly improved. Additionally, such diagnostic lateral wellbores can provide quicker location of sweet-spot horizons in reservoirs.
Abstract:
A composite having a solid particulate and a surface modifying treatment agent on the solid particulate wherein the surface modifying treatment agent has a hydrophobic tail and an anchor for adhering the hydrophobic tail onto the solid particulate. The anchor is an organophosphorus acid derivative. The composite may be used as a proppant in a hydraulic fracturing operation as well as a sand control particulate in a gravel packing operation. The presence of the surface modifying treatment agent on the surface of the solid particulate reduces the generation of fines and dust as well as the migration of sand during a hydraulic fracturing operation or a sand control operation. The presence of the surface modifying treatment agent on the surface of the solid particulate further enhances the crush resistance of the solid particulate.
Abstract:
A well treatment composite is characterized by particulates wherein at least a portion of the substrate of the particulates is coated with a polycationic polymer. The presence of the polycationic polymer on the surface of the well treatment particulates reduces the generation of dust and fines during a well treatment operation. The polycationic polymer further reduces the amount of dust or fines generated during transport of the well treatment particulates to a remote location as well during the manufacture or processing of well treatment particulates.