Abstract:
A composite is characterized by particulates of sand wherein at least a portion of the surface of the particulates is coated with a polycationic polymer. The presence of the polycationic polymer on the surface of the particulates reduces the amount of dust generated during handling and use of the sand. The polycationic polymer further reduces the amount of dust generated during transport of the sand as well during manufacture, treatment or processing of the sand.
Abstract:
A composite is characterized by particulates of sand wherein at least a portion of the surface of the particulates is coated with a polycationic polymer. The presence of the polycationic polymer on the surface of the particulates reduces the amount of dust generated during handling and use of the sand. The polycationic polymer further reduces the amount of dust generated during transport of the sand as well during manufacture, treatment or processing of the sand.
Abstract:
The flow of well treatment fluids may be diverted from a high permeability zone to a low permeability zone within a fracture network within a subterranean formation by use of a divert system comprising dissolvable diverter particulates and proppant. At least a portion of the high permeability zone is propped open with the proppant of the divert system and at least a portion of the high permeability zone is blocked with the diverter particulates. A fluid is then pumped into the subterranean formation and into a lower permeability zone of the formation farther from the wellbore. The diverter particulates in the high permeability zones may then be dissolved at in-situ reservoir conditions and hydrocarbons produced from the high permeability propped zones of the fracture network. The divert system has particular applicability in the enhancement of production or hydrocarbons from high permeability zones in a fracture network located far field from the wellbore.
Abstract:
Well treatment particulates are coated with polyionic material and a composite is formed comprising multiple layers of polyelectrolyte, each layer composed of polyionic material counter to the polyionic material of the polyelectrolyte layer to which it is adjacent.
Abstract:
A method of treating a subterranean formation comprises pumping into a well penetrating the formation a surface modifying treatment agent having a metallic anchor and at least one hydrophobic tail attached to the metal of the anchor. The surface modifying treatment agent is covalently bound to the surface of the subterranean formation through the metal of the anchor.
Abstract:
Fouling caused by contaminants onto a metallic tubular, flow conduit or vessel in an underground reservoir or extending from or to an underground reservoir may be inhibited by applying onto the surface of the metallic tubular, flow conduit or vessel a treatment agent comprising a hydrophobic tail and an anchor. The anchor attaches the treatment agent onto the surface of the metallic tubular, flow conduit or vessel.
Abstract:
A method of treating a subterranean formation comprises pumping into a well penetrating the formation a surface modifying treatment agent having a metallic anchor and at least one hydrophobic tail attached to the metal of the anchor. The surface modifying treatment agent is covalently bound to the surface of the subterranean formation through the metal of the anchor.
Abstract:
Relatively low strength and/or relatively low density, but ductile materials may be folded or crumpled and finely divided to give proppants for introduction into hydraulic fractures, where the folded or crumpled structure of the proppants gives relatively increased strength relative to the relatively low strength and/or relatively low density of the materials. Materials not previously considered suitable for proppants may be considered when structure or configured in this manner. Similarly to the case where crumpled paper within a cardboard box keeps it from collapsing, the folded or crumpled material spontaneously develops structural rigidity at relatively low volume fractions without a specific externally imposed design. The folded or crumpled proppants may also be used alone or together with conventional proppants for sand control in gravel packs or frac packs.
Abstract:
Relatively low strength and/or relatively low density, but ductile materials may be folded or crumpled and finely divided to give proppants for introduction into hydraulic fractures, where the folded or crumpled structure of the proppants gives relatively increased strength relative to the relatively low strength and/or relatively low density of the materials. Materials not previously considered suitable for proppants may be considered when structure or configured in this manner. Similarly to the case where crumpled paper within a cardboard box keeps it from collapsing, the folded or crumpled material spontaneously develops structural rigidity at relatively low volume fractions without a specific externally imposed design. The folded or crumpled proppants may also be used alone or together with conventional proppants for sand control in gravel packs or frac packs.
Abstract:
Cements, such as alkali activated binder, may be used as coatings on proppants, such as sand, to improve the strength thereof. The resulting chemically bonded phosphate ceramic (CBPC) coated proppants show increased compressive strength between about 60 to about 130 MPa, as well as produced fines of lower than about 10 wt % at 10,000 psi closure stress.