Abstract:
A process for polymerizing ethylene in a high-pressure polymerization system having a continuously operated polymerization reactor and a reactor blow down system having an emergency valve, a reactor blow down vessel containing an aqueous medium and a reactor blow down dump vessel, wherein the process includes the steps of monitoring the polymerization system for a disturbance, opening the emergency valve when a disturbance occurs to allow the content of the polymerization system to expand into the reactor blow down vessel, contacting the content of the polymerization system in the reactor blow down vessel with the aqueous medium to obtain an aqueous polymer slurry, separating the polymer slurry and gaseous components, and transferring the polymer slurry to the reactor blow down dump vessel.
Abstract:
A process for the preparation of ethylene homopolymers or copolymers in a facility having a high-pressure tubular reactor and a preheater, wherein a reaction fluid introduced into the reactor at a reactor inlet is heated in the preheater and the average velocity of the reaction fluid in the preheater is lower than the average velocity of the reaction fluid in the tubular reactor and the ratio of the average velocity in the tubular reactor to the average velocity of the reaction fluid in the preheater is in the range from 1.5 to 5.
Abstract:
A process for separating polymeric and gaseous components of a polymer-monomer mixture at a pressure of from 0.12 MPa to 0.6 MPa and a temperature of from 120° C. to 300° C. in a separation vessel is provided. The separation vessel has a vertically arranged cylindrical shape with a ratio of length to diameter L/D of from 0.6 to 10 and an inlet pipe capable of introducing the polymer-monomer mixture into the separation vessel which the inlet pipe extends vertically from the top of the separation vessel into the separation vessel. Further a process for preparing ethylene homopolymers or copolymers from ethylenically unsaturated monomers in the presence of free-radical polymerization initiators at temperatures from 100° C. to 350° C. and pressures in the range of from 110 MPa to 500 MPa comprising such a process for separating a polymer-monomer mixture is provided.
Abstract:
The present technology relates to a process for polymerizing or copolymerizing ethylenically unsaturated monomers in the presence of free-radical polymerization initiators, wherein the polymerization is carried out in a continuously operated tubular reactor at temperatures from 100° C. to 350° C. and pressures from 180 MPa to 340 MPa, with a specific reactor surface area Asp of 2 m2/(t/h) to 5.5 m2/(t/h), and the tubular reactor has a specific ratio RDsp of 0.0050 MPa−1 to 0.0069 MPa−1 and an inner surface which has a surface roughness Ra of 2 μm or less.
Abstract:
The present disclosure relates to a manufacturing plant for high-pressure polymerization having a layered tubular reactor and a method for an emergency shutdown in said manufacturing plant. The present disclosure also relates to a process for manufacturing LDPE using said layered tubular reactor.
Abstract:
The present disclosure relates to a plant for performing polymerization, such as the polymerization of ethylene, having a recycle connection with two or more cooling channels arranged in parallel, a process for polymerization and downstream processes, and a plant for polymerization, comprising the following plant components in fluid communication: a) A reactor with an inlet side and an outlet side; b) A recycle connection positioned in fluid communication between the outlet side of the reactor and the inlet side of the reactor; wherein the recycle connection comprises two or more cooling channels arranged in parallel.
Abstract:
The present technology relates to a process for polymerizing or copolymerizing ethylenically unsaturated monomers in the presence of free-radical polymerization initiators, wherein the polymerization is carried out in a continuously operated tubular reactor at temperatures from 100° C. to 350° C. and pressures from 180 MPa to 340 MPa, with a specific reactor surface area Asp of 2 m2/(t/h) to 5.5 m2/(t/h), and the tubular reactor has a specific ratio RDsp of 0.0050 MPa−1 to 0.0069 MPa−1 and an inner surface which has a surface roughness Ra of 2 μm or less.
Abstract:
The present technology relates to a process for polymerizing or copolymerizing ethylenically unsaturated monomers in the presence of free-radical polymerization initiators, wherein the polymerization is carried out in a continuously operated tubular reactor at temperatures from 100° C. to 350° C. and pressures from 180 MPa to 340 MPa, with a specific reactor surface area Asp of 2 m2/(t/h) to 5.5 m2/(t/h), and the tubular reactor has a specific ratio RDsp of 0.0050 MPa−1 to 0.0069 MPa−1 and an inner surface which has a surface roughness Ra of 2 μm or less.
Abstract:
Method for the preparation of dried polymer pellets in a facility having a dryer with a first chamber and a mechanical agitator, and the facility further having a degassing silo with a second chamber, the method includes the steps of guiding a drying gas flow made from or containing a first gas mixture for drying wet polymer pellets into the first chamber, transferring the dried polymer pellets into the second chamber, guiding a second gas mixture for degassing the dried polymer pellets into the second chamber thereby transforming the second gas mixture into a third gas mixture and guiding a portion of the third gas mixture into the first chamber; and process for manufacturing LDPE pellets.
Abstract:
The present disclosure relates to a manufacturing plant for high-pressure polymerization having a layered tubular reactor and a method for an emergency shutdown in said manufacturing plant. The present disclosure also relates to a process for manufacturing LDPE using said layered tubular reactor.