Abstract:
The present invention relates to the use of an olefin-carboxylic acid copolymer, wherein the copolymer comprises at least one free carboxylic acid side group, or of a nitrogen compound quaternized with epoxide in the presence of an olefin-carboxylic acid copolymer, wherein the copolymer comprises at least one free carboxylic acid side group, as a fuel additive or lubricant additive; to processes for preparing additives of this kind, and to fuels and lubricants additized therewith; such as, more particularly, as a detergent additive; for reduction or prevention of deposits in the injection systems of direct injection diesel engines, especially in common rail injection systems, for reduction of the fuel consumption of direct injection diesel engines, especially of diesel engines with common rail injection systems, and for minimization of power loss in direct injection diesel engines, especially in diesel engines with common rail injection systems; and as an additive for gasoline fuels, especially for operation of DISI engines.
Abstract:
An olefin-carboxylic acid copolymer, containing at least one free carboxylic acid side group, or a nitrogen compound quaternized with epoxide in the presence of an olefin-carboxylic acid copolymer, containing at least one free carboxylic acid side group, can be used as a fuel additive or lubricant additive. Processes can be used for preparing additives of this kind and fuels and lubricants additized therewith, such as a detergent additive. These additives, fuels, and lubricants can be used for reduction or prevention of deposits in injection systems of direct injection diesel engines, especially in common rail injection systems; for reduction of fuel consumption of direct injection diesel engines, especially of diesel engines with common rail injection systems; and for minimization of power loss in direct injection diesel engines, especially in diesel engines with common rail injection systems. The additives can also be used for gasoline fuels, especially for operation of DISI engines.
Abstract:
The present invention relates to a method for producing mineral oil from underground mineral oil deposits, in which an aqueous formulation comprising at least a mixture of alkyl ether carboxylate and corresponding alkyl ether alcohol, where the alkyl ether carboxylate has been prepared from the alkyl ether alcohol and the molar ratio in the mixture of alkyl ether carboxylate:alkyl ether alcohol is from 51:49 to 92:8, is injected through at least one injection well into a mineral oil deposit, where the deposit has a deposit temperature of 55° C. to 150° C., a crude oil having more than 20° API and a deposit water having more than 100 ppm of divalent cations, and crude oil is withdrawn through at least one production well from the deposit. The invention further relates to the preparation of the mixture and to a concentrate comprising the mixture.
Abstract:
The present invention relates to a surfactant mixture comprising at least three ionic surfactants which differ in terms of the hydrocarbyl moiety (R1)(R2)—CH—CH2— and are of the general formula (I) where R1, R2, A0, k, X, o, Y, a, b, M are each as defined in the description and the claims. The invention further relates to the use and preparation thereof, and to aqueous surfactant formulations comprising the mixtures, and to processes for producing mineral oil by means of Winsor type III microemulsion flooding, in which the aqueous surfactant formulation is injected into a mineral oil deposit through injection wells and crude oil is withdrawn from the deposit through production wells.
Abstract:
In a method of treating a substrate including patterns having line-space dimensions of 50 nm or below, the substrate is rinsed by an aqueous composition including at least one non-ionic surfactant A and at least one hydrophobizer B. The at least one surfactant A has an equilibrium surface tension of 10 mN/m to 35 mN/m, determined from a solution of the at least one surfactant A in water at the critical micelle concentration. The hydrophobizer B is selected so that the contact angle of water to the substrate is increased by contacting the substrate with a solution of the hydrophobizer B in water by 5-95° compared to the contact angle of water to the substrate before such contacting.
Abstract:
An olefin-carboxylic acid copolymer, containing at least one free carboxylic acid side group, or a nitrogen compound quaternized with epoxide in the presence of an olefin-carboxylic acid copolymer, containing at least one free carboxylic acid side group, can be used as a fuel additive or lubricant additive. Processes can be used for preparing additives of this kind and fuels and lubricants additized therewith, such as a detergent additive. These additives, fuels, and lubricants can be used for reduction or prevention of deposits in injection systems of direct injection diesel engines, especially in common rail injection systems; for reduction of fuel consumption of direct injection diesel engines, especially of diesel engines with common rail injection systems; and for minimization of power loss in direct injection diesel engines, especially in diesel engines with common rail injection systems. The additives can also be used for gasoline fuels, especially for operation of DISI engines.
Abstract:
An olefin-carboxylic acid copolymer, containing at least one free carboxylic acid side group, or a nitrogen compound quaternized with epoxide in the presence of an olefin-carboxylic acid copolymer, containing at least one free carboxylic acid side group, can be used as a fuel additive or lubricant additive. Processes can be used for preparing additives of this kind and fuels and lubricants additized therewith, such as a detergent additive. These additives, fuels, and lubricants can be used for reduction or prevention of deposits in injection systems of direct injection diesel engines, especially in common rail injection systems: for reduction of fuel consumption of direct injection diesel engines, especially of diesel engines with common rail injection systems; and for minimization of power loss in direct injection diesel engines, especially in diesel engines with common rail injection systems. The additives can also be used for gasoline fuels, especially for operation of DISI engines.
Abstract:
The present invention relates to a surfactant mixture comprising at least three ionic surfactants which differ in terms of the hydrocarbyl moiety (R1)(R2)—CH—CH2— and are of the general formula (I) where R1, R2, A0, k, X, o, Y, a, b, M are each as defined in the description and the claims. The invention further relates to the use and preparation thereof, and to aqueous surfactant formulations comprising the mixtures, and to processes for producing mineral oil by means of Winsor type III microemulsion flooding, in which the aqueous surfactant formulation is injected into a mineral oil deposit through injection wells and crude oil is withdrawn from the deposit through production wells.
Abstract:
The present invention relates to a process for mineral oil extraction by means of Winsor type III microemulsion flooding, in which an aqueous surfactant formulation comprising at least three ionic surfactants which are different with regard to the alkyl moiety (R1)(R2)—CH—CH2— and are of the general formula (R1)(R2)—CH—CH2—O-(D)n-(B)m-(A)l-XYa−a/bMb+ is injected through injection boreholes into a mineral oil deposit, and crude oil is withdrawn from the deposit through production boreholes. The invention further relates to surfactant formulations of ionic surfactants of the general formula.
Abstract:
The present invention relates to a surfactant mixture comprising at least one secondary alkanesulfonate having 14 to 17 carbon atoms of the general formula (I) and at least one anionic surfactant of the general formula (II) where R1, R2, R3, R4, A0, k, X, o, Y, a, b, M are each as defined in the description and the claims. The invention further relates to the use and production thereof, and to aqueous surfactant formulations comprising the surfactant mixture, and to processes for producing mineral oil by means of Winsor type III microemulsion flooding, in which the aqueous surfactant formulation is injected through injection wells into a mineral oil deposit and crude oil is withdrawn through production wells from the deposit.