Abstract:
A nitrate salt composition comprising A) an alkali metal nitrate and optionally an alkali metal nitrite in a total amount in the range from 90 to 99.84% by weight and B)an alkali metal compound selected from the group B1) alkali metal oxide, B2) alkali metal carbonate, B3) alkali metal compound which decomposes into alkali metal oxide or alkali metal carbonate in the temperature range from 250° C. to 600° C., B4) alkali metal hydroxide MetOH, in which Met is lithium, sodium, potassium, rubidium, cesium, B5) alkali metal peroxide Met2O2, in which Met is lithium, sodium, potassium, rubidium, cesium, and B6) alkali metal superoxide MetO2, in which Met is sodium, potassium, rubidium, cesium, in a total amount in the range from 0.16 to 10% by weight, in each case based on the nitrate salt composition.
Abstract:
The present invention relates to a process for providing carbonic acid esters of formula (I). Further, the invention relates to the intermediates of the formula (IVa).
Abstract:
The present invention relates to a process for preparing an unsaturated alcohol, preferably 3,7-dimethyl-2,6-octadienal, by contacting an alkene, preferably isobutene, with formaldehyde in the presence a condensation catalyst comprising a zeolitic material comprising the framework structure of which comprises a tetravalent element Y other than Si.
Abstract:
The present invention relates to new types of cyclic carbaldehydes, the preparation thereof and the use as aromachemical, in particular as fragrance, and to aroma substance compositions and products comprising these carbaldehydes.
Abstract:
The present invention relates to new types of cyclic carbaldehydes, the preparation thereof and the use as aromachemical, in particular as fragrance, and to aroma substance compositions and products comprising these carbaldehydes.
Abstract:
The present invention relates to a process for preparing deodorized 1,2-propanediol, to the use of the purified propanediol and to an apparatus for performing the process.
Abstract:
The invention relates to an apparatus for heating a pipeline system, comprising at least two pipelines (1), along which in each case one electrical resistance heating element extends, wherein a potential close to the ground potential is set at each electrical resistance heating element at at least one end (3, 5), and the electrical resistance heating element is connected to a terminal of a DC source or to in each case one phase (7) of an n-phase AC source (9) at a position remote from this end (3, 5), where, when using an n-phase AC source (9), n is an integer equal to or greater than 2.
Abstract:
Nitrate salt composition comprising as significant constituentsA) an alkali metal nitrate and optionally an alkali metal nitrite in a total amount in the range from 90 to 99.84% by weight and B) an alkali metal compound selected from the group B1) alkali metal oxide, B2) alkali metal carbonate, B3) alkali metal compound which decomposes into alkali metal oxide or alkali metal carbonate in the temperature range from 250° C. to 600° C., B4) alkali metal hydroxide MetOH, in which Met is lithium, sodium, potassium, rubidium, cesium, B5) alkali metal peroxide Met2O2, in which Met is lithium, sodium, potassium, rubidium, cesium, and B6) alkali metal superoxide MetO2, in which Met is sodium, potassium, rubidium, cesium, in a total amount in the range from 0.16 to 10% by weight, in each case based on the nitrate salt composition.
Abstract:
Method of maintaining or widening the long-term operating temperature range of a heat transfer medium and/or heat storage medium comprising a nitrate salt composition selected from the group consisting of alkali metal nitrate and alkaline earth metal nitrate and optionally alkali metal nitrite and alkaline earth metal nitrite, wherein the nitrate salt composition is brought into contact with an additive comprising the components nitric acid and/or nitrous acid and oxygen-comprising gas having an oxygen partial pressure which is equal to or greater than that in air and/or oxygen-generating compounds and optionally nitrogen oxides and/or compounds which generate further nitrogen oxide.
Abstract:
The invention relates to a pipeline system for a linearly concentrating solar power plant (1) with at least one receiver line (13), in which a heat transfer medium is heated by radiating solar energy, or with a central receiver and at least one emptying tank (21) and/or one store for the heat transfer medium, the heat transfer medium having a vapor pressure of less than 0.5 bar at the maximum operating temperature. Furthermore, a gas displacement system (31) is comprised, which connects gas spaces in the at least one emptying tank (21) and/or in the store for the heat transfer medium to one another and which has a central gas store (35) and/or a central gas connection (37) and a central exhaust gas outlet (39), through which gas can be discharged into the surroundings.