Abstract:
A renal therapy system with cassette-based blood and dialysate pumping is disclosed. An example system includes a blood pump actuator, a dialysis fluid pump actuator, a dialysis fluid heater, a dialyzer, and a disposable unit. The example disposable unit includes a blood cassette portion configured to be operatively connected to the blood pump actuator to pump blood through the blood cassette portion. The example disposable unit also includes a dialysis fluid cassette portion, separate from the blood cassette portion, configured to be operatively connected to the dialysis fluid pump actuator to pump dialysis fluid through the dialysis fluid cassette portion. The blood cassette portion and the dialysis fluid cassette portion are both in fluid communication with the dialyzer. The example disposable unit also includes a heater bag configured to be placed in operable communication with the dialysis fluid heater and in fluid communication with the dialysis fluid cassette portion.
Abstract:
Systems and methods for hemodialysis or peritoneal dialysis having integrated electrodeionization capabilities are provided. In an embodiment, the dialysis system includes a carbon source, a urease source and an electrodeionization unit. The carbon source and urease source can be in the form of removable cartridges.
Abstract:
A medical fluid or dialysis system includes an auto-connection mechanism that connects connectors from the supply bags to dialysis cassette ports or cassette supply lines. The system provides for multiple, e.g., four, supply bags, which can be connected to a manifold of the auto-connection mechanism. Tip protecting caps that protect the supply line ends and cassette ports or cassette supply line ends are made to be compatible with the auto-connection mechanism. The auto-connection mechanism removes all the caps and connects the supply lines to the cassette. At least one roller occluder is provided that occludes the supply tubing prior to the tip protecting caps being removed. The roller occludes prevent medical dialysis fluid from spilling out of the supply lines between the time that the caps are removed and connection to the cassette is made.
Abstract:
A renal failure blood therapy system includes a renal failure blood therapy machine, a test including multiple blood samples taken at multiple times during a test therapy to determine concentration levels for each of a first solute and a second solute at each of the multiple times, and a device programmed to (i) estimate at least one first patient parameter using the determined concentration levels for the first solute, (ii) estimate at least one second patient parameter using the determined concentration levels for the second solute, (iii) determine a first plurality of acceptable treatments using the at least one first patient parameter, (iv) determine a second plurality of acceptable treatments using the at least one second patient parameter, and (v) merge the first plurality of acceptable treatments with the second plurality of acceptable treatments to determine a plurality of clinically acceptable treatments for both the first solute and the second solute.
Abstract:
Systems and methods for hemodialysis or peritoneal dialysis having integrated electrodialysis and electrodeionization capabilities are provided. In an embodiment, the dialysis system includes a carbon source, a urease source, an ED/EDI unit. The carbon source, urease source, and/or the ED/EDI unit can be in the form of removable cartridges.
Abstract:
A system for performing a peritoneal dialysis therapy includes at least one dialysis fluid pump, and a control unit operable with the at least one dialysis fluid pump to perform a plurality of peritoneal dialysis cycles, the cycles including a fill phase, a dwell phase and a drain phase. The control unit configured to (i) store a previously entered continuous cycling peritoneal dialysis (“CCPD”) therapy having a total prescribed fresh dialysate fill volume delivered over n cycles, the cycles performed over a total therapy duration, and (ii) automatically convert the CCPD therapy into a tidal peritoneal dialysis therapy having n+1 cycles, less a number of cycles already completed during the CCPD therapy, using the total prescribed fresh dialysis fill volume, and maintaining the total therapy duration.
Abstract:
A handheld personal communication apparatus for dialysis includes: a reader to (i) read a marking displayed on a dialysis fluid container to acquire data concerning at least one of a dialysis fluid type or a dialysis fluid volume from the marking, and/or (ii) receive a patient weight signal from a weight scale; a processor using at least one of the dialysis fluid type, dialysis fluid volume, or patient weight to determine a dialysis dwell time for at least one cycle of a dialysis therapy, the dialysis dwell time being a time to achieve, over the at least one cycle, at least one of (a) a specified ultrafiltrate level, (b) a urea removal level, or (c) a creatinine removal level; and an output interface providing an indication to the patient of a completion of the dialysis dwell time.
Abstract:
Transfer sets are disclosed in the present patent. The transfer set provides a connection between a source of peritoneal dialysis fluid and a patient for whom peritoneal dialysis has been prescribed. The transfer sets disclosed herein are smaller and provide a more compact and convenient device by which a dialysis patient controls the flow of dialysis fluid to and from the peritoneum of the patient. The devices are more compact and convenient because they include more convenient mechanisms for starting and stopping flow of the dialysis fluid. It is also easy to determine whether the mechanism is in a closed or open configuration by simply looking at the mechanism.
Abstract:
Systems and methods for hemodialysis or peritoneal dialysis having integrated electrodialysis and electrodeionization capabilities are provided. In an embodiment, the dialysis system includes a carbon source, a urease source, an ED/EDI unit. The carbon source, urease source, and/or the ED/EDI unit can be in the form of removable cartridges.
Abstract:
A hemodiafiltration system with a disposable pumping unit is disclosed. An example system includes a medical fluid pump actuator, a medical fluid heater, a blood filter and a disposable unit. The example disposable unit includes a medical fluid cassette portion including a medical fluid cassette housing configured to be operatively connected to the medical fluid pump actuator to pump medical fluid through the medical fluid cassette portion when the medical fluid cassette portion is in fluid communication with a medical fluid source. The example medical fluid cassette portion is also configured to be placed in fluid communication with the blood filter and with an extracorporeal circuit communicating with the blood filter, the fluid communication enabling hemodiafiltration to be performed. The example disposable unit also includes a heater bag configured to be placed in operable communication with the medical fluid heater and in fluid communication with the medical fluid cassette portion.