NANOCLAY SORBENT METHODS FOR USE WITH DIALYSIS

    公开(公告)号:US20210353840A1

    公开(公告)日:2021-11-18

    申请号:US17388265

    申请日:2021-07-29

    Abstract: Dialysis is enhanced by using nanoclay sorbents to better absorb body wastes in a flow-through system. The nanoclay sorbents, using montmorillonite, bentonite, and other clays, absorb significantly more ammonium, phosphate, and creatinine, and the like, than conventional sorbents. The montmorillonite, the bentonite, and the other clays may be used in wearable systems, in which a dialysis fluid is circulated through a filter with the nanoclay sorbents. Waste products are absorbed by the montmorillonite, the bentonite, and the other clays and the dialysis fluid is recycled to a patient's peritoneum. Using an ion-exchange capability of the montmorillonite, the bentonite, and the other clays, waste ions in the dialysis fluid are replaced with desirable ions, such as calcium, magnesium, and bicarbonate. The nanoclay sorbents are also useful for refreshing a dialysis fluid used in hemodialysis and thus reducing a quantity of the dialysis fluid needed for the hemodialysis.

    METHOD AND APPARATUS FOR TRENDING AUTOMATED PERITONEAL DIALYSIS TREATMENTS

    公开(公告)号:US20200330672A1

    公开(公告)日:2020-10-22

    申请号:US16921478

    申请日:2020-07-06

    Abstract: A system for performing a peritoneal dialysis therapy includes at least one dialysis fluid pump, and a logic implementer operable with the at least one dialysis fluid pump to perform a plurality of peritoneal dialysis cycles for a patient. The logic implementer transmits an amount of dialysis fluid provided during the plurality of peritoneal dialysis cycles. A server receives the amount of dialysis fluid provided during the plurality of peritoneal dialysis cycles and determines an amount of ultrafiltration (“UF”) removed from the patient based on the amount of dialysis fluid provided by the at least one dialysis fluid pump. The server also updates a UF trend using previous amounts of UF removed from the patient and the amount of UF removed from the patient during the most recent dialysis treatment and generates an alert if the UF trend changes by more than a preset percentage.

    NANOCLAY SORBENT METHODS FOR USE WITH DIALYSIS

    公开(公告)号:US20190262527A1

    公开(公告)日:2019-08-29

    申请号:US16412999

    申请日:2019-05-15

    Abstract: Dialysis is enhanced by using nanoclay sorbents to better absorb body wastes in a flow-through system. The nanoclay sorbents, using montmorillonite, bentonite, and other clays, absorb significantly more ammonium, phosphate, and creatinine, and the like, than conventional sorbents. The montmorillonite, the bentonite, and the other clays may be used in wearable systems, in which a dialysis fluid is circulated through a filter with the nanoclay sorbents. Waste products are absorbed by the montmorillonite, the bentonite, and the other clays and the dialysis fluid is recycled to a patient's peritoneum. Using an ion-exchange capability of the montmorillonite, the bentonite, and the other clays, waste ions in the dialysis fluid are replaced with desirable ions, such as calcium, magnesium, and bicarbonate. The nanoclay sorbents are also useful for refreshing a dialysis fluid used in hemodialysis and thus reducing a quantity of the dialysis fluid needed for the hemodialysis.

    Nanoclay sorbents for dialysis
    20.
    发明授权

    公开(公告)号:US10342912B2

    公开(公告)日:2019-07-09

    申请号:US15816550

    申请日:2017-11-17

    Abstract: Dialysis is enhanced by using nanoclay sorbents to better absorb body wastes in a flow-through system. The nanoclay sorbents, using montmorillonite, bentonite, and other clays, absorb significantly more ammonium, phosphate, and creatinine, and the like, than conventional sorbents. The montmorillonite, the bentonite, and the other clays may be used in wearable systems, in which a dialysis fluid is circulated through a filter with the nanoclay sorbents. Waste products are absorbed by the montmorillonite, the bentonite, and the other clays and the dialysis fluid is recycled to a patient's peritoneum. Using an ion-exchange capability of the montmorillonite, the bentonite, and the other clays, waste ions in the dialysis fluid are replaced with desirable ions, such as calcium, magnesium, and bicarbonate. The nanoclay sorbents are also useful for refreshing a dialysis fluid used in hemodialysis and thus reducing a quantity of the dialysis fluid needed for the hemodialysis.

Patent Agency Ranking