Abstract:
Molecular species that are immobilized in discrete locations on a planar support such as protein bands on a gel or a blotting membrane or species applied in dots or spots on a membrane are reacted with binding reagents that are applied through a porous hydrophilic transfer sheet placed over the planar support, the sheet having at least one region that is laterally bordered by a barrier with the binding reagent retained within the bordered region. The bordered region is placed directly over an area on the planar support where the molecular species are expected to reside if they are present on the support. The binding reagent is then delivered into the support to contact the species. Targeted delivery of the binding reagent is thus achieved with improved efficiency.
Abstract:
Systems for protein quantitation using a Fabry-Perot interferometer. In one arrangement, a quantitation device includes an infrared source, a sample holder, and a Fabry-Perot interferometer positioned to receive infrared radiation from the source passing through a sample on the sample holder. A band pass optical filter sets the working range of the interferometer, and radiation exiting the interferometer falls on a detector that produces a signal indicating the intensity of the received radiation. A controller causes the interferometer to be tuned to a number of different resonance wavelengths and receives the intensity signals, for determination of an absorbance spectrum.
Abstract:
Methods, kits, and systems are provided for separating, immobilizing, and/or detecting analytes of one or more samples using dipsticks. A ‘dipstick’ is an object that can be embedded and subsequently removed from a separation medium, and to which analytes can be immobilized while the object is embedded in the separation medium. Examples of separation media include an electrophoresis gel of any format and a stationary phase for column chromatography. Embodiments of the present methods include applying a sample to a separation medium; separating analytes of the sample in the separation medium along a separation axis; immobilizing the analytes on a dipstick embedded in the separation medium; removing the dipstick from the separation medium; and detecting the analytes immobilized on the removed dipstick.
Abstract:
Electrotransfer is performed in an instrument that receives electroblotting cassettes and that contains an integrated power supply, controls, and a display that allows the user to monitor and control each of a plurality of cassettes individually through electrical contacts within the housing that mate with corresponding electrical contacts on the cassettes.
Abstract:
Devices, systems, methods, and kits are provided for performing separation, immobilization, blotting, and/or detection of analytes from biological samples. In some embodiments, the devices are constructed from two solid substrates with surfaces in contact. The devices include a plurality of channels formed from indentations in these surfaces. The indentations can be aligned with each other across the interface between the substrates, and realigned by shifting or sliding one substrate relative to the other. In some embodiments, the devices are constructed from three layers of a solid substrate. A separation channel in the middle layer of the device is first used for analyte separation. The middle layer can then be slid relative the top and/or bottom layer, thereby aligning the separation channel with a blotting membrane. Analytes can then be transferred to the membrane using electrodes in the top and bottom layers.
Abstract:
Molds for casting and retaining electrophoresis gel strips are provided, along with methods, kits, and systems for performing electrophoresis, electroelution, and/or electroblotting using these molds.
Abstract:
Systems for protein quantitation using a Fabry-Perot interferometer. In one arrangement, a quantitation device includes an infrared source, a sample holder, and a Fabry-Perot interferometer positioned to receive infrared radiation from the source passing through a sample on the sample holder. A band pass optical filter sets the working range of the interferometer, and radiation exiting the interferometer falls on a detector that produces a signal indicating the intensity of the received radiation. A controller causes the interferometer to be tuned to a number of different resonance wavelengths and receives the intensity signals, for determination of an absorbance spectrum.