Abstract:
Provided are an array substrate and driving method thereof, and a display apparatus. The array substrate comprises multiple storage electrode lines (1) each of which comprises at least two storage electrode signal input terminals (11). The array substrate can improve the driving capability of the storage electrode signals on the storage electrode lines (1).
Abstract:
An antenna device and a mobile apparatus including the antenna device are provided. The antenna device includes: a direction detector configured to detect moving direction of the mobile apparatus where the antenna device is located and generate a direction signal indicating the moving direction; a driver connected to the direction detector and configured to generate corresponding driving voltage signal according to the direction signal from the direction detector; an antenna element connected to the driver and configured to transmit and receive electromagnetic wave, wherein the antenna element includes a first liquid crystal layer, an area where the first liquid crystal layer is located is divided into resonance regions, the antenna element separately adjusts dielectric constant of the first liquid crystal layer within each of the resonance regions according to the driving voltage signal, to transmit and receive electromagnetic wave in the moving direction corresponding to the driving voltage signal.
Abstract:
Embodiments of the present disclosure provide a preparation delivery assembly including: a first substrate, a second substrate, and at least two needles of different lengths, each of which is a hollow needle having a hollow structure; wherein two side walls are provided between the first substrate and the second substrate to define a first chamber for containing a preparation by the first substrate, the second substrate, and the two side walls; at least one first channel that is in communication with the first chamber is provided in the second substrate in a direction substantially perpendicular to the second substrate; and the needles are arranged on a surface of the second substrate distal to the first substrate, and each of the needles is in communication with the first chamber through the at least one first channel to deliver the preparation.
Abstract:
A mobile device, including: a direction sensor, a signal processing unit and a directional antenna unit, said direction sensor being configured to detect a current movement direction of said mobile device; said signal processing unit being configured to determine an antenna adjustment direction of said directional antenna unit according to said current movement direction, said antenna adjustment direction being related to said current movement direction; and said directional antenna unit being configured to adjust the antenna direction from a first direction to a second direction according to said antenna adjustment direction.
Abstract:
An antenna structure, a manufacturing method thereof and a communication device are provided. The antenna structure includes a first base substrate, a second base substrate, a dielectric layer provided between the first base substrate and the second base substrate, an isolation layer, first coplanar electrodes provided on one side of the isolation layer facing the first base substrate, and second coplanar electrodes provided on another side of the isolation layer facing the second base substrate. In the direction perpendicular to the first base substrate, the dielectric layer includes a first dielectric layer and a second dielectric layer, and the isolation layer is provided between the first dielectric layer and the second dielectric layer. The first coplanar electrodes include first electrodes and second electrodes alternately arranged. The second coplanar electrodes include third electrodes and fourth electrodes alternately arranged.
Abstract:
An array substrate includes a display region (12), a bonding region (13), and a planarization layer (14), and a thickness of at least a portion of the pattern of the planarization layer (14) provided in the display region (12) is larger than a thickness of the pattern of the planarization layer (14) provided in the bonding region (13). In the array substrate, the upper surface of the display region is higher than the upper surface of the bonding region of the array substrate, thus, it is possible to reduce or avoid the phenomenon of bad bonding in the bonding region. A display device is further provided.
Abstract:
An organic light emitting diode (OLED) display device and a preparation method thereof, and a display apparatus are disclosed. The OLED display device includes: a thin layer transistor (22), a first electrode (23′), a second electrode (26′) and an organic functional layer (25) located between the first electrode (23′) and the second electrode (26′). The thin film transistor (22) comprises a gate electrode (221), a source electrode (222) and a drain electrode (223); and the first electrode (23′) is electrically connected with the drain electrode (223). The display device further comprises a first auxiliary electrode (27) formed from a topological insulator. The first auxiliary electrode (27) is electrically connected with the second electrode (26′) to provide electrical signals for the second electrode (26′). The OLED display avoids the problems of high IR drop and non-uniform lightness caused by the large transmission resistance of the cathodes.
Abstract:
A display device and an array substrate are disclosed. The display device includes a display panel and signal boards which supply signals to the display panel. At least a pair of signal boards that are connected with each other is electrically connected using a plug-in connection mode. A first plug-in structure is provided on a first signal board of each pair of signal boards connected in the plug-in connection mode, and a second plug-in structure corresponding to the first plug-in structure is provided on a second signal board of the pair of signal boards connected in the plug-in connection mode. Because at least a pair of signal boards that are connected with each other is electrically connected using a plug-in connection mode, a quantity of signal lines arranged between signal boards is reduced, which enables assembly and disassembly be more convenient.
Abstract:
A liquid crystal phase shifter and an electronic device. The liquid crystal phase shifter includes a first substrate and a second substrate arranged opposite to each other, a liquid crystal layer, a first electrode and a second electrode. The liquid crystal layer is between the first substrate and the second substrate. The first electrode is on the first substrate. The second electrode is on the second substrate. The second electrode includes a connection portion and a plurality of concentric annular structures, at least one of the concentric annular structures includes a plurality of protruded portions, at least another of the concentric annular structures includes a plurality of recessed portions, and the connection portion is electrically connected to each of the concentric annular structures.
Abstract:
A metamaterial structure unit, a metamaterial and an electronic device. The metamaterial structure unit includes a first substrate, a second substrate, a liquid crystal layer between the two substrates, and a first electrode on the first substrate and a second electrode on the second substrate. The first electrode includes a first connecting portion, a first strip structure and a plurality of first circular arc structures on a first circumference. The second electrode includes a second connecting portion, a second strip structure and a plurality of second circular arc structures on a second circumference. In a case that the first electrode is rotated by 90 degrees around a center of the first circumference, a projection of the first electrode on the second substrate in a direction perpendicular to the second substrate coincides with the second electrode.