Abstract:
A system and method for testing partially assembled engines for possible oil leaks. The system includes engine pressurizing devices that are automatically controlled by a controller according to a predetermined control program based upon the engine model type being tested. The pressurizing devices introduce pressurized air into the engine oil system. A leak testing unit monitors the pressurized engine for pressure drops indicative of an oil seal leak. Air pressure leaks resulting from inherently air-porous EGR valves are compensated for by an EGR compensating unit, which provides pressurized air to an intake side of the EGR valve. The flow of pressurized air through the EGR compensating unit is monitored to determine whether there is a problem with the EGR valve.
Abstract:
A method for fabrication and testing of a magnichanical sensor for proper operation in detecting the presence of a snap ring during manufacture of an object having the snap ring for clasping a bearing. The magnichanical sensor is comprised of a magnetic field generator and a magnetic switch that are properly aligned on a sensor circuit board. The apparatus adjusts a second position of the magnetic switch with respect to a first position of the magnetic field generator on the sensor circuit board. The apparatus includes an indicator assembly coupled to the magnetic switch for indicating when the second position of the magnetic switch is properly aligned with respect to the first position of the magnetic field generator on the sensor circuit board. The second position of the magnetic switch with respect to the first position of the magnetic field generator is adjusted for proper alignment for both situations when the snap ring is present and when the snap ring is not present. Thus, the operation of the magnichanical sensor within the fabrication and testing unit of the present invention is mirrored for proper operation during manufacture of a vehicle transmission system. When the first position of the magnetic field generator and the second position of the magnetic switch are properly aligned, the magnetic field generator is securely attached to the sensor circuit board at the first position, and the magnetic switch is securely attached to the sensor circuit board at the second position, to form the magnichanical sensor.
Abstract:
A device is provided for allowing detection of a switch closure across an air gap between components. The device comprises a wireless inductive coupled switch designed for use with any suitable proximity sensor. The switch and sensor transmit a switch closure at a closable switch across the air gap. When the wireless inductive coupled switch is moved into the sensing range of the inductive proximity sensor, the ferrite core portion of the inductive coupled switch and the coil surrounding the ferrite portion are inductively coupled by the alternating field generated by the inductive proximity sensor. The alternating magnetic flux lines of the inductive proximity sensor move back and forth through the ferrite core portion and the coil. As long as the closable switch is open, no current is induced into the coil. When the switch is closed, the electrical path through the coil is complete, allowing current to be induced from the alternating field generated by the inductive proximity sensor into the coil of the wireless inductive coupled switch.
Abstract:
A system and method are provided for detecting the presence of a snap ring in a bearing assembly of a transmission system. A magnetic field is generated and a switch is positioned within the magnetic field, whereby the switch switches from its normal position to an opposite position when a snap ring is placed in the magnetic field. In response to the switch position, the presence or absence of the snap ring is indicated.
Abstract:
A method and apparatus for reducing or eliminating the energy required by an operator of a delivery cart to start the cart moving in a predetermined direction at a predetermined speed as well as to recover some or all of the energy used to start the cart moving. The apparatus includes a cart, a drive wheel, a motor for driving the drive wheel, and a rechargeable energy source to power said motor where the rechargeable energy source is recharged during normal, unpowered movement of the cart. The method includes charging a power source while moving the cart, actuating a directional button to initiate movement in a desired direction, energizing a clutch to couple the motor to the driven wheel, energizing the motor to drive the driven wheel in the desired direction. After a predetermined time period, set by a run timer, the clutch is decoupled while the motor remains activated, and thereafter the motor is deactivated.
Abstract:
A method and apparatus for reducing or eliminating the energy required by an operator of a delivery cart to start the cart moving in a predetermined direction at a predetermined speed as well as to recover some or all of the energy used to start the cart moving. The apparatus includes a cart, a drive wheel, a motor for driving the drive wheel, and a rechargeable energy source to power said motor where the rechargeable energy source is recharged during normal, unpowered movement of the cart. The method includes charging a power source while moving the cart, actuating a directional button to initiate movement in a desired direction, energizing a clutch to couple the motor to the driven wheel, energizing the motor to drive the driven wheel in the desired direction. After a predetermined time period, set by a run timer, the clutch is decoupled while the motor remains activated, and thereafter the motor is deactivated.
Abstract:
A method for pressure testing an engine to detect possible oil seal leaks. The engine is charged with a predetermined pressure while air pressure is also applied to an exhaust gas recirculation (EGR) valve intake port to offset leakage inherent in the EGR valve. Thereafter, a pressure drop in the engine pressure is used to determine whether an oil seal leak may be present. Applying pressurized air to the EGR valve intake port compensates for EGR valve leakage and prevents the EGR valve leakage from masking possible oil seal leaks, thereby making the system more sensitive to such potential oil seal leaks.
Abstract:
A system and method for testing partially assembled engines for possible oil leaks. The system includes engine pressurizing devices that are automatically controlled by a controller according to a predetermined control program based upon the engine model type being tested. The pressurizing devices introduce pressurized air into the engine oil system. A leak testing unit monitors the pressurized engine for pressure drops indicative of an oil seal leak. Air pressure leaks resulting from inherently air-porous EGR valves are compensated for by an EGR compensating unit, which provides pressurized air to an intake side of the EGR valve. The flow of pressurized air through the EGR compensating unit is monitored to determine whether there is a problem with the EGR valve.
Abstract:
A method is provided for testing and setting the position of a position sensor for a transmission. A shift control shaft is provided, and the position sensor is positioned to align with the shift control shaft, and provide a shift position output. A position sensor testing device is installed to test position rotation of the position sensor as the shift control shaft is moved through shift positions. The tested position rotation of the position sensor is compared with a predetermined window of accurate positioning for the position sensor. Finally, the position of the position sensor is set based on the comparison.
Abstract:
The present invention is an assembly line testing apparatus and method for automatically verifying proper connectivity of a plurality of components to a wiring harness within an article of manufacture, such as a vehicle engine, by electrically determining whether a closed circuit loop is formed with each component through two respective nodes of the wiring harness. A micro-controller controls application of a test voltage signal at a first node of the wiring harness to be coupled to one node of a component. The micro-controller then determines whether such a test voltage signal appears on a second node of the wiring harness to be coupled to the other node of the component to determine whether the component is properly connected to the wiring harness. In addition, the micro-controller determines and outputs an identification of any of the plurality of components that is not properly connected to the wiring harness. The present invention may be used to particular advantage for verifying proper connectivity of a plurality of engine components to the wiring harness within a vehicle engine during assembly of the vehicle engine.