Abstract:
A method for testing a container (11) having an interior volume (12) for tightness, comprising the following steps: providing the container (11) in a pressure chamber (10) and reducing pressure within the pressure chamber (10) or increasing pressure within the container (11) as far as a predefined test pressure, ascertaining a pressure profile (100) within the pressure chamber (10) over time, comparing the pressure profile (100) to a reference profile (200) in order to determine whether a leak is present within the container (11), wherein ambient conditions of the container (11) and/or the pressure chamber (10) are monitored and the reference profile (200) is adapted to changing ambient conditions.
Abstract:
The invention relates to a testing device for testing the tightness of containers (2), comprising a supply unit (3) for supplying the containers (2), a testing unit (4) for testing the tightness of the containers (2), a diverting unit (5) for diverting tested tight containers (2), and a discharge unit (6) for discharging containers (2′) tested to be untight in the testing unit (2). The testing unit (4) has at least one individual testing chamber (42) for testing individual containers and at least one multiple testing chamber (41) for receiving a plurality of containers in order to simultaneously test multiple containers (2). The testing device also comprises a control unit (10) which is designed to supply possibly untight containers (2′) which have been discharged by means of the discharge unit (6) from a multiple testing chamber (41) individually back into an individual testing chamber (42) in order to carry out an individual test of said containers.
Abstract:
The present invention provides an air tightness detection device for an aluminum alloy wheel hub, which is characterized by precision air pressure sensors, a lower clamp, a cone cylinder pressure plate, air pipes, a pressure plate, guide posts, an air inlet pipe, and a compressed gas control and detection system. A technical solution of the present invention has the following advantages that the cone cylinder pressure plate of the detection device reduces the space of an inner cavity of the wheel hub to further reduce inflating volume, thereby increasing detection efficiency; the characteristics of readily availability for preparation, no pollution and low cost are achieved by taking compressed air as a leakage indication gas.
Abstract:
Disclosed are methods and an apparatuses for loading and unloading objects into/from corresponding cavities in holders at a high count rate. For loading, a plurality of objects are present on an object path which mutually converges with a holder path. For unloading, the object path mutually diverges from the holder path. Integration of this method and apparatus respectively into a method of manufacturing unleaky containers and a corresponding apparatus for leak testing containers is also proposed.
Abstract:
For leak testing closed containers (9) which are filled with a filling product containing at least one liquid component the container is introduced in a test cavity (1) which is evacuated at least down to vapor pressure of that liquid component. The pressure in the surrounding of the container (9) and thus within test cavity (1) is monitored. Monitoring is performed by a vacuum pressure sensor (7), whereas lowering pressure surrounding the container (9) is performed by a vacuum pump (5). Leakage is detected by monitoring a pressure change in the surrounding of the container which is due to evaporation of liquid emerging from a leak and being evaporated in the low pressure surrounding.
Abstract:
An analytical instrument suitable for a use in a variety of industrial environments features a housing having a sealed primary chamber filled with a dry, inert gas at a first static pressure. An instrumentation system is disposed within the primary chamber, where fire hazard is eliminated by the inert gas. The housing additionally includes a reference chamber holding a gas a second pressure lower than the first pressure. One or more pressure switches, in pressure-sensing relationship with both chambers, is operative to interrupt the application of power to the instrumentation system if the differential between first and second pressures falls below a predetermined value. In this manner, the instrumentation system is rendered safe whenever the primary chamber is breached or otherwise loses inert gas pressure.
Abstract:
A portable containment vessel to perform a pressure test to a test specimen includes a base skid, a ballistic outer enclosure connected to the base skid and comprising a plurality of walls, a door, and a lock to maintain the door in a closed position, a sample tray configured to support the test specimen, wherein the sample tray is operable through a doorway of the ballistic outer enclosure between a retracted position and an extended position, a containment fluid to surround the test specimen while a pressurized test fluid is applied to the test specimen, and a sensor to indicate a failure of the pressure test.
Abstract:
A reconfigurable leak testing system includes a leak testing station, an off-shuttle disposed adjacent to the leak testing station, and a fixture cartridge that is translatable between the off-shuttle and the leak testing station. The fixture cartridge is configured to selectively couple with the leak testing station and includes an upper fixture, a lower fixture, and a plurality of actuatable testing features. The fixture cartridge is configured to receive a part between the upper fixture and lower fixture, and the plurality of actuatable testing features are configured to contact the received part to create a closed volume adjacent the part, wherein the closed volume may be pressurized via a pressurized fluid, and examined for leaks.
Abstract:
A method is disclosed in which a vapor-deposited coating or layer is directly or indirectly applied to at least a portion of the internal wall of the barrel of a capped pre-assembly comprising a barrel, optionally a dispensing portion, and a cap. The cap is secured to the barrel and at least substantially isolates the distal opening of the dispensing portion from pressure conditions outside the cap. A vapor-deposited coating or layer is applied directly or indirectly to at least a portion of the internal wall of the barrel while the pre-assembly is capped. The coating or layer is applied under conditions effective to maintain communication from the barrel lumen to the exterior via the front opening, optionally further via the dispensing portion lumen if present, at the end of the applying step. The capped pre-assembly can be pressure tested easily and rapidly, for example with a test duration between 1 and 60 seconds, to determine whether it has container closure integrity.
Abstract:
A method for testing waterproof property of an object designed to prevent water from penetrating into the inside of the object and having a hole, the hole allowing air communication between the inside and the outside of the object, the method includes: attaching closely to the object a tank having an opening hermetically surrounding the hole to form an air communication path between the inside of the object and the tank to form a single air tight space; placing the object to which the tank is attached in an air tight container; either or both of injecting gas into and extracting the air from the air tight container containing the object so as to change the gaseous pressure of the air tight container; and measuring an internal gaseous pressure of the air tight container to determine whether the waterproof property of the object is effective or not.