Abstract:
A secured communication network can include a server including an authentication backend, the authentication backend configured to communicate with an authentication front end of a communication device. A server applet can be associated with the authentication backend. The server applet can authenticate an access right associated with the communication device and establish a security level for the communication with the communication device based on information received from the authentication front end.
Abstract:
An apparatus may comprise a secure portion of a chip and an external memory device. The secure portion of the chip may be configured to receive an encryption key, and the memory device may be configured to receive an encrypted processing code. The secure portion of the chip may be configured to verify the encrypted processing code by decrypting the encrypted processing code using the encryption key. A non-secure portion of the chip may be configured to write the encrypted processing code on the memory device while the memory device is coupled to the chip. The encryption key may be associated with an identifier of the chip.
Abstract:
A secured communication network can include a server including an authentication backend, the authentication backend configured to communicate with an authentication front end of a communication device. A server applet can be associated with the authentication backend. The server applet can authenticate an access right associated with the communication device and establish a security level for the communication with the communication device based on information received from the authentication front end.
Abstract:
Host based content security and protection. Security is achieved via a third-party device serving as an intermediary or host (e.g., certificate authority (CA)) between two or more user device is associated with two or more users. Any number of security measures may be employed to ensure that the content and/or identity associated with a given user is protected, including on a per communication or content basis. Various authentication, authorization, and accounting (AAA) protocols may be employed to govern the respective sharing of content and/or identity between respective users within the system, and such AAA protocols may be dynamically allocated differently with respect to different pairings of users at different respective times. In addition, with respect to digital rights management (DRM) employed to govern the security of content and/or identity between users, a third-party device (e.g., intermediary) and/or any respective user may establish specific rules for secure content and/or identity communications.
Abstract:
A secure integrated circuit (IC) to provide access to an electronic storage, the secure IC including a memory and a processor. The processor may generate a first key and a second key, and enable storing the first key in the memory and storing the second key in a device memory of a device. The processor may then receive the second key from the device when the device wants to access the electronic storage, and grant the device access to the electronic storage by using the first key and the second key received from the device.
Abstract:
A device includes a receiver configured to receive a request to perform a function. A secure element connected with the receiver, the secure element to verify the request to perform the function, where the secure element is configured to operate in either a report mode or a silent mode. Details about a status of the performance of the function are displayed when the device operates in the report mode, and no details about the status of the performance of the function are displayed when the device operates in the silent mode.
Abstract:
Disclosed are various embodiments providing a portable wireless communication device that includes a secure element configured to route a set of input/output (I/O) channels to host processing circuitry of a mobile communication device. The secure element includes an application executable by the secure element, the application being configured to obtain a policy via an I/O channel of the set of I/O channels. The application is further configured to prevent the host processing circuitry from accessing data corresponding to at least a portion of the set of I/O channels according to the policy.
Abstract:
A device includes a receiver configured to receive a request to perform a function. A secure element connected with the receiver, the secure element to verify the request to perform the function, where the secure element is configured to operate in either a report mode or a silent mode. Details about a status of the performance of the function are displayed when the device operates in the report mode, and no details about the status of the performance of the function are displayed when the device operates in the silent mode.
Abstract:
A secure element operating in conjunction with a secure partition of a system-on-a-chip (SoC) having set top box (STB) functionality allows for digital rights management (DRM) key handling in a mobile platform. The secure element can include a secure processing system (SPS) to be implemented as a hard macro, thereby isolating the SPS from a peripheral processing system (PPS). The secure element and the secure partition of the SoC may be operatively connected by a secure cryptographic channel.
Abstract:
Systems and methods are provided that allow a secure processing system (SPS) to be implemented as a hard macro, thereby isolating the SPS from a peripheral processing system (PPS). The SPS and the PPS, combination, may form a secure element that can be used in conjunction with a host device and a connectivity device to allow the host device to engage in secure transactions, such as mobile payment over a near field communications (NFC) connection. As a result of the SPS being implemented as a hard macro isolated from the PPS, the SPS may be certified once, and re-used in other host devices without necessitating re-certification.