Abstract:
A method for fabricating an integrated circuit device is disclosed. The method includes providing a substrate; forming a first material layer over the substrate; forming a second material layer over the first material layer, wherein the second material layer comprises a photodegradable base material; and exposing at least a portion of the second material layer.
Abstract:
Immersion lithography apparatus and method using a shield module are provided. An immersion lithography apparatus including a lens module having an imaging lens, a substrate table positioned beneath the lens module and configured for holding a substrate for processing, a fluid module for providing an immersion fluid to a space between the lens module and the substrate on the substrate table, and a shield module for covering an edge of the substrate during processing.
Abstract:
A lithography apparatus includes an imaging lens module; a substrate table positioned underlying the imaging lens module and configured to hold a substrate; and a cleaning module adapted to clean the lithography apparatus. The cleaning module is selected from the group consisting of an ultrasonic unit, a scrubber, a fluid jet, an electrostatic cleaner, and combinations thereof.
Abstract:
Immersion lithography system and method using a sealed wafer bottom are described. One embodiment is an immersion lithography apparatus comprising a lens assembly comprising an imaging lens and a wafer stage for retaining a wafer beneath the lens assembly, the wafer stage comprising a seal ring disposed on a seal ring frame along a top edge of the wafer retained on the wafer stage, the seal ring for sealing a gap between an edge of the wafer and the wafer stage. The embodiment further includes a fluid tank for retaining immersion fluid, the fluid tank situated with respect to the wafer stage for enabling full immersion of the wafer retained on the wafer stage in the immersion fluid and a cover disposed over at least a portion of the fluid tank for providing a temperature-controlled, fluid-rich environment within the fluid tank; and
Abstract:
Immersion lithography system and method using a sealed wafer bottom are described. One embodiment is an immersion lithography apparatus comprising a lens assembly comprising an imaging lens and a wafer stage for retaining a wafer beneath the lens assembly, the wafer stage comprising a seal ring disposed on a seal ring frame along a top edge of the wafer retained on the wafer stage, the seal ring for sealing a gap between an edge of the wafer and the wafer stage. The embodiment further includes a fluid tank for retaining immersion fluid, the fluid tank situated with respect to the wafer stage for enabling full immersion of the wafer retained on the wafer stage in the immersion fluid and a cover disposed over at least a portion of the fluid tank for providing a temperature-controlled, fluid-rich environment within the fluid tank fluid-rich environment within the fluid tank.
Abstract:
Immersion lithography system and method using a sealed wafer bottom are described. One embodiment is an immersion lithography apparatus comprising a lens assembly comprising an imaging lens and a wafer stage for retaining a wafer beneath the lens assembly, the wafer stage comprising a seal ring disposed on a seal ring frame along a top edge of the wafer retained on the wafer stage, the seal ring for sealing a gap between an edge of the wafer and the wafer stage. The embodiment further includes a fluid tank for retaining immersion fluid, the fluid tank situated with respect to the wafer stage for enabling full immersion of the wafer retained on the wafer stage in the immersion fluid and a cover disposed over at least a portion of the fluid tank for providing a temperature-controlled, fluid-rich environment within the fluid tank; and
Abstract:
Immersion lithography system and method using direction-controlling fluid inlets are described. According to one embodiment of the present disclosure, an immersion lithography apparatus includes a lens assembly having an imaging lens disposed therein and a wafer stage configured to retain a wafer beneath the lens assembly. The apparatus also includes a plurality of direction-controlling fluid inlets disposed adjacent to the lens assembly, each direction-controlling fluid inlet in the plurality of direction-controlling fluid inlets being configured to direct a flow of fluid beneath the lens assembly and being independently controllable with respect to the other fluid inlets in the plurality of direction-controlling fluid inlets.
Abstract:
Immersion lithography apparatus and method using a shield module are provided. An immersion lithography apparatus including a lens module having an imaging lens, a substrate table positioned beneath the lens module and configured for holding a substrate for processing, a fluid module for providing an immersion fluid to a space between the lens module and the substrate on the substrate table, and a shield module for covering an edge of the substrate during processing.