Abstract:
A method controls the power-transmission in a machine having a continuously variable transmission (CVT) and a power source operatively coupled together in a powertrain. The method regulates operation of the CVT with a retarding power limit in order to limit the amount of retarding power transferable from the powertrain to the power source. The retarding power may be utilized to decelerate or decrease the speed of the machine. The method may register an operator input signal indicative of a deceleration event from a plurality of possible deceleration events. The deceleration event is compared to a lookup table to determine if the retarding power limit should be adjusted. The method may adjust the retarding power limit in accordance with the comparison.
Abstract:
A system and method involves a machine that powertrain including a continuously variable transmission (CVT) and a machine speed sensor to determine a measured machine speed. The machine also includes a controller in communication with the CVT and the speed sensor. The controller may include a table relating the measured machine speed to a plurality of virtual gear ratios associated with the CVT. The controller is configured to determine a calculated virtual gear ratio using the table and, if desired, may display the calculated virtual gear ratio on a visual display.
Abstract:
A method regulates a machine having a continuously variable transmission (CVT) and service brakes in a manner to reduce power transmission through the applied brakes. The method utilizes an unaltered torque-to-speed curve that relates the torque output to the speed output of the CVT. An under-run curve may be applied to the torque-to-speed curve and that corresponds to a target speed. The method may receive an operator input signal indicative of a braking event. In response, the method may shift the torque-to-speed curve to limit the output torque available. The method may also adjust the under-run curve in a manner that maintains correspondence with the target speed.
Abstract:
A power system for a machine is provided. The power system includes an operator interface for entering an operator command relating to one or more functions of the machine. The power system includes a hydraulic pump and an engine configured to provide power to the hydraulic device. A controller is in communication with the operator interface, the hydraulic device and the engine. The controller is configured to consider operator skill level information relating to a skill level of the operator of the machine and to determine at least one desired power system operating parameter based on the operator command and the operator skill level information and to adjust at least one of the hydraulic pump and the engine based on the desired power system operating parameter.
Abstract:
A power system for a machine is provided. The power system includes an operator interface for entering an operator command relating to one or more functions of the machine. The power system includes a hydraulic pump and an engine configured to provide power to the hydraulic device. A controller is in communication with the operator interface, the hydraulic device and the engine. The controller is configured to consider operator skill level information relating to a skill level of the operator of the machine and to determine at least one desired power system operating parameter based on the operator command and the operator skill level information and to adjust at least one of the hydraulic pump and the engine based on the desired power system operating parameter.
Abstract:
Method of controlling multiple variable displacement hydraulic pumps determined relative to operator commands. If non-second-pump-dominated command, a respective adjusted displacement request is determined based upon the lesser of the operator requested torque limited displacement and an adjusted torque limited displacement that calculated based upon and the torque limited displacement of the respective pump and a scaling factor calculated based upon the first relief valve set pressure and respective pump pressure. If second-pump-dominated command, the set pressure of a relief valve associated with one of the pumps is instead utilized in calculating the scaling factor in the above strategy.
Abstract:
A method regulates the torque output and/or speed output of a continuously variable transmission (CVT) in a manner that may simulate a clutch. The CVT may be incorporated in a machine and maybe operatively coupled to a power source and to a propulsion device. The method utilizes an unaltered torque-to-speed curve that relates the torque output to the speed output of the CVT. The method may receive an operator input signal indicating a desire to change operation of the machine. The torque-to-speed curve may be shifted in response to the operator input signal to limit the torque output available. In an aspect, an under-run curve may be applied to the torque-to-speed curve, the under-run curve corresponding to a target speed. The operator input signal may also shift the under-run curve to reduce the target speed.
Abstract:
A machine may include a continuously variable transmission (CVT) operatively coupled to a power source. A virtual gear ratio may be selected from a plurality of virtual gear ratios associated with the CVT. A power source speed may be locked between a minimum power source limit and a maximum power source limit that are associated with the selected virtual gear ratio. If the virtual gear ratio is changed, a controller including one or more control maps may compare the power source speed as locked to the minimum power source limit and the maximum power source limit as they relate to the newly selected virtual gear ratio. If power source speed is outside the minimum or maximum power source limits, the method may limit the power source speed. In some embodiments, the minimum and/or maximum power source limits may vary with respect to the plurality of virtual gear ratios.
Abstract:
A method regulates the torque output and/or speed output of a continuously variable transmission (CVT) in a manner that may simulate a clutch. The CVT may be incorporated in a machine and maybe operatively coupled to a power source and to a propulsion device. The method utilizes an unaltered torque-to-speed curve that relates the torque output to the speed output of the CVT. The method may receive an operator input signal indicating a desire to change operation of the machine. The torque-to-speed curve may be shifted in response to the operator input signal to limit the torque output available. In an aspect, an under-run curve may be applied to the torque-to-speed curve, the under-run curve corresponding to a target speed. The operator input signal may also shift the under-run curve to reduce the target speed.